点击切换搜索课件文库搜索结果(10065)
文档格式:PPT 文档大小:1.69MB 文档页数:69
§4.1 标准平衡常数 4.1.3 标准平衡常数的实验测定 4.1.2 标准平衡常数表达式 4.1.1 化学平衡的基本特征 §4.2 标准平衡常数的应用 4.2.1 判断反应程度 4.2.3 计算平衡组成 4.2.2 预测反应方向 §4.3 化学平衡的移动 §4.4 自发变化和熵 4.4.1 自发变化 4.4.5 化学反应熵变和 4.4.4 热力学第三定律和标准熵 4.4.3 混乱度、熵和微观状态数 4.4.2 焓和自发变化 §4.5 Gibbs函数 4.5.3 Gibbs函数与化学平衡 4.5.2 标准摩尔生成Gibbs函数 4.5.1 Gibbs函数[变]判据 4.5.4 van’t Hoff 方程式
文档格式:PPT 文档大小:468KB 文档页数:29
§9.2 傅立叶变换的离散性和周期性对称关系 §9.3 从离散傅立叶级数(DFS)到离散傅立叶变换(DFT)
文档格式:DOC 文档大小:32KB 文档页数:5
1、书写标识符时,忽略了大小写字母的区别。 编译程序把a和A认为是两个不同的变量名,而显示出错信息。C认为大写字母和小写字母是两个不同的字符。习惯上,符号常量名用大写,变量名用小写表示,以增加可读性 。 2、忽略了变量的类型,进行了不合法的运算。 printf(\%d\, a%b) 是求余运算,得到a/b的整余数。整型变量a和b可以进行求余运算,而实型变量则不允许进行「求 余」运算 。 3、将字符常量与字符串常量混淆。 在这里就混淆了字符常量与字符串常量,字符常量是由一对单引号括起来的单个字符,字符串常量是一对 双引号括起来的字符序列
文档格式:PDF 文档大小:494.32KB 文档页数:27
2.1 变分法 2.1.1 变分原理 2.1.2 变分法 2.2 氦原子基态的变分处理 2.2.1 氦原子的 Schrödinger 方程 2.2.2 原子单位 2.2.3 单电子近似 2.2.4 反对称波函数和泡利(Pauli)原理 2.2.5 氦原子基态的变分处理 2.3 自洽场方法 2.3.1 氦原子总能量的表达式 2.3.2 哈特利-福克(Hartree-Fock)方程 2.4 中心力场近似 2.4.1 中心力场近似 2.4.2 屏蔽常数和轨道指数 2.5 原子内电子的排布 2.5.1 Pauli 原理 2.5.2 能量最低原理 2.5.3 洪特(Hund)规则 2.6 原子的状态和原子光谱项 2.6.1 电子组态与原子状态 2.6.2 原子光谱项 2.6.3 举例说明原子光谱项的写法 2.7 原子光谱 2.7.1 原子发射光谱和原子吸收光谱 2.7.2 原子光谱项所对应的能级 2.7.3 原子光谱的选择定则 2.8 定态微扰理论 2.8.1 非简并情况下的定态微扰理论 2.8.2 简并情况下的定态微扰理论 2.9 定态微扰理论的简单应用 2.9.1 氦原子基态的微扰处理 2.9.2 氢原子的一级斯达克(Stark)效应
文档格式:DOC 文档大小:196KB 文档页数:5
教学内容及教学过程 1.3变形与强度计算 一、失效、安全系数和强度计算 二、轴向拉伸或压缩的变形 线 1、轴向变形 设直杆的原长为1,横截面面积为A,在轴向拉力的P的作用下长度由1变成1,杆件在轴向方向 的伸长为
文档格式:PPT 文档大小:369KB 文档页数:11
1. z变换的定义 2. z变换的性质和定理 3. 用z变换法解线性常系数差分方程
文档格式:PPT 文档大小:451KB 文档页数:29
§3.8 时域 卷积定理 §3.9 周期信号的傅立叶变换 • 一般周期信号的傅立叶变换 • 傅立叶级数FS与其单脉冲的傅立叶 变换FT的关系 • 正余弦信号的傅立叶变换FT • 周期单位冲激序列的FS和 FT • 周期矩形脉冲的FS和FT • 周期矩形脉冲与单矩形脉冲的关系
文档格式:PDF 文档大小:2.07MB 文档页数:69
2.1 概述 2.2 温度检测与变送 2.3 压力检测与变送 2.4 流量检测与变送 2.5 物位检测与变送 2.6 智能检测仪表 2.7 检测系统数据处理方法 2.8 软测量与先进检测的应用
文档格式:PDF 文档大小:471.33KB 文档页数:5
研究了钢在低应变速率下的热塑性,得出了描述应变速率与热塑性关系的模型。研究结果表明,低应变速率下的热塑性与蠕变密切相关
文档格式:PDF 文档大小:573.6KB 文档页数:7
研究了GH36合金持久缺口敏感性对裂纹扩展速率的影响。结果表明:通过软化的热处理制度来改善材料的持久塑性达到消除持久缺口敏感性的目的,对在蠕变或以蠕变为主的应力条件下延缓裂纹的扩展具有重要意义;而在低周疲劳或以疲劳为主的应力条件下,裂纹扩展速率对强度敏感,而与材料是否存在持久缺口敏感性无关;提高强度可显著提高材料的抗低周疲劳裂纹扩展能力。为使材料在蠕变、疲劳以及蠕变疲劳交互作用下都只有高的抗裂纹扩展能力,应对材料进行强韧化
首页上页105106107108109110111112下页末页
热门关键字
搜索一下,找到相关课件或文库资源 10065 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有