点击切换搜索课件文库搜索结果(1281)
文档格式:PPT 文档大小:1.25MB 文档页数:45
利用直接积分法求出的不定积分是很有限的 为了求出更多函数的不定积分,下面建立一些有效地积分法。 一、凑微分法
文档格式:PPT 文档大小:384.5KB 文档页数:28
第三节柯西积分公式及其推论 1柯西积分公式 利用柯西积分定理(复围线形式)导 出一个用边界值表示解析函数内部值的 积分公式
文档格式:PPT 文档大小:627.5KB 文档页数:32
Gauss公式 一、 Gauss公式 前面我们将 Newton-Lebniz-公式推广到了平面 区域的情况,得到了Green公式。此公式表达了平面 闭区域上的二重积分与其边界曲线上的曲线积分之间 的关系。下面我们再把Green公式做进一步推广,这 就是下面将要介绍的 Gauss公式, Gauss公式表达了 空间闭区域上的三重积分与其边界曲面上的曲面积分 之间的关系,同时Gauss公式也是计算曲面积分的一 有效方法
文档格式:PDF 文档大小:150.31KB 文档页数:4
教学目的 本节讨论关于积分号下取极限的性质,即取极限和求积分交 换顺序的定理. 内容包括三个重要的定理以及一些推论. 本节要点 积分的极限定理有三个重要定理,即单调收敛定理, Fatou 引 理和控制收敛定理, 它们分别适用于不同的情况. 学习本节的内容应注意分 清各个定理的条件和结论
文档格式:PPT 文档大小:714KB 文档页数:25
二重积分的计算法(1) 一、利用直角坐标系计算二重积分 如果积分区域为:a≤x≤b,1(x)≤y≤2(x)
文档格式:PDF 文档大小:224.49KB 文档页数:10
教学目的 本节讨论测度空间的乘积空间,并且证明一个重要的定理 —Fubini 定理. 本节要点 乘积测度的构造利用了§2.2 测度的延拓定理. Fubini 定理是 积分理论的基本定理之一,它是关于二元函数的二重积分,累次积分交换积 分顺序的定理.Fubini 定理在理论推导和计算积分方面有广泛的应用
文档格式:PPT 文档大小:491.5KB 文档页数:17
由牛顿—莱布尼兹公式知:计算定积分f(x)d 的关键在于求出f(x)在[a,b]上的一个原函数F(x);而由 第五章知求函数的原函数(即不定积分)的方法有凑微分法、 换元法和分部积分法.因而在一定条件下,也可用这几 种方法来计算定积分
文档格式:PPT 文档大小:722.5KB 文档页数:10
在计算定积分时,换元法是一种强有力的方法.在计算二重积分时,也常用此法.特别是二重积分f(xy)do不易计算时,我们也可根据积分区域D的形状和被积函数 f(x,y)的特点,用一个适当的变换
文档格式:PPT 文档大小:352.5KB 文档页数:6
类似于一元函数的广义积分对于二元函数也有两 类广义二重积分.即可分为积分区域无限与被积函数无 界两种下面只研究无界区域上的二重积分的计算方法 定义3设D是xoy面上的无界区域,f(x2y)在D上连续且G 是D上的任意一个闭区域上若G以任何方式无限扩展且 趋于D时,均有limf(x,y)dxdy=1
文档格式:PPT 文档大小:499.5KB 文档页数:14
由6.1知定积分是一个复杂和式的极限,但要想通过 求积分和的极限来得到定积分的值,却非常困难;下面 寻求一种计算定积分的非常简便的新方法——牛顿莱布 尼兹(Netwon-Laibniz-)公式计算法. 一.积分上限函数
首页上页112113114115116117118119下页末页
热门关键字
搜索一下,找到相关课件或文库资源 1281 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有