点击切换搜索课件文库搜索结果(1800)
文档格式:DOC 文档大小:50.5KB 文档页数:2
定理7设A是n维线性空间V的一个线性变换A的矩阵可以在某一基下为 对角矩阵的充要条件是A有n个线性无关的特征向量. 定理8属于不同特征值的特征向量是线性无关的 推论1如果在n维线性空间V中,线性变换的特征多项式在数域P中有n 个不同的根,即A有n个不同的特征值,那么A某组基下的矩阵是对角形的 推论2在复数上的线性空间中,如果线性变换A的特征多项式没有重根
文档格式:DOC 文档大小:182.5KB 文档页数:4
一、线性变换的乘法 设A,B是线性空间V的两个线性变换,定义它们的乘积为 (AB)(a)=A,B(a))(a∈V) 则线性变换的乘积也是线性变换 线性变换的乘法适合结合律,即 (AB)C=(BC)
文档格式:DOC 文档大小:126KB 文档页数:3
一、线性变换的定义 线性空间V到自身的映射称为V的一个变换 定义1线性空间V的一个变换A称为线性变换,如果对于V中任意的元 素a,和数域P中任意数k,都有 A(a+B)=(a)+A(B);
文档格式:DOC 文档大小:61KB 文档页数:1
定义 9 设 1 2 V ,V 是线性空间 V 的子空间,如果和 V1+V2 中每个向量  的分 解式
文档格式:DOC 文档大小:84.5KB 文档页数:2
一、线性子空间的概念 定义 7 数域 P 上的线性空间 V 的一个非空子集合 W 称为 V 的一个线性子空 间(或简称子空间),如果 W 对于 V 的两种运算也构成数域 P 上的线性空间
文档格式:DOC 文档大小:116.5KB 文档页数:3
一、向量的线性相关与线性无关 定义 2 设 V 是数域 P 上的一个线性空间
文档格式:DOC 文档大小:218.5KB 文档页数:4
一、集合 集合是数学中最基本的概念之一,所谓集合就是指作为整体看的一堆东西
文档格式:DOC 文档大小:63.5KB 文档页数:3
经过非退化线性替换,二次型的矩阵变成一个与之合同的矩阵.由第四章§4 定理 4,合同的矩阵有相同的秩,这就是说,经过非退化线性替换后,二次型矩 阵的秩是不变的.标准形的矩阵是对角矩阵,而对角矩阵的秩就等于它对角线上 不为零的平方项的个数
文档格式:DOC 文档大小:111.5KB 文档页数:4
一、二次型及其矩阵表示 设 P 是一个数域,一个系数在数域 P 中的
文档格式:DOC 文档大小:128.5KB 文档页数:4
这一节我们来建立矩阵的初等变换与矩阵乘法的联系,并在这个基础上,给 出用初等变换求逆矩阵的方法
首页上页112113114115116117118119下页末页
热门关键字
搜索一下,找到相关课件或文库资源 1800 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有