点击切换搜索课件文库搜索结果(3381)
文档格式:PPT 文档大小:40.5KB 文档页数:5
布鲁金斯学会主席,美前总统经济顾问委员会主 席奥肯(Arthur Okun)根据美国1947-1960年 的数据,得到如下回归方程,称之为奥肯定律 y
文档格式:PPT 文档大小:232.5KB 文档页数:38
一、多重共线性的概念 二、多重共线性的后果 三、多重共线性的检验 四、克服多重共线性的方法 五、案例
文档格式:PPT 文档大小:664KB 文档页数:96
一、序列相关性的概念——违反基本假设的定义及违反的原因 二、序列相关性的后果——违反基本假设会造成什么样的后果 三、序列相关性的检验——怎样诊断是否违反基本假设 四、具有序列相关性模型的估计——如何消除或减弱对基本假设的违反 五、案例
文档格式:PPT 文档大小:259.5KB 文档页数:28
一、参数估计量的区间估计—不做介绍 二、预测值的区间估计
文档格式:PDF 文档大小:271.29KB 文档页数:47
Ch. 21 Univariate Unit Root process 1 Introduction Consider OLS estimation of a AR(1)process, Yt= pYt-1+ut where ut w ii d (0, 0), and Yo=0. The OLS estimator of p is given by and we also have
文档格式:PDF 文档大小:191.61KB 文档页数:22
Ch. 23 Cointegration 1 Introduction An important property of (1) variables is that there can be linear combinations of theses variables that are I(O). If this is so then these variables are said to be cointegrated. Suppose that we consider two variables Yt and Xt that are I(1) (For example, Yt= Yt-1+ St and Xt= Xi-1+nt.)Then, Yt and Xt are said to be cointegrated if there exists a B such
文档格式:PDF 文档大小:254.41KB 文档页数:46
Ch. 2 Probability Theory 1 Descriptive Study of Data 1.1 Histograms and Their Numerical Characteristics By descriptive study of data we refer to the summarization and exposition(tab- ulation, grouping, graphical representation) of observed data as well as the derivation of numerical characteristics such as measures of location, dispersion and shape
文档格式:PDF 文档大小:185.13KB 文档页数:26
Ch. 4 Asymptotic Theory From the discussion of last Chapter it is obvious that determining the dis- tribution of h(X1, X2, . . Xr) is by no means a trival exercise. It turns out that more often than not we cannot determine the distribution exactly. Because of the importance of the problem, however, we are forced to develop approximations the subject of this Chapter
文档格式:PDF 文档大小:168.15KB 文档页数:27
Ch. 6 The Linear model under ideal conditions The(multiple) linear model is used to study the relationship between a dependent variable(Y) and several independent variables(X1, X2, ,Xk). That is ∫(X1,X2,…,Xk)+ E assume linear function 1X1+B2X2+…+6kXk+E xB+ where Y is the dependent or explained
文档格式:PDF 文档大小:107.29KB 文档页数:8
Ch.8 Nonspherical Disturbance This chapter will assume that the full ideal conditions hold except that the covari- ance matrix of the disturbance, i.e. E(EE)=02Q2, where Q is not the identity matrix. In particular, Q may be nondiagonal and / or have unequal diagonal ele- ments Two cases we shall consider in details are heteroscedasticity and auto-
首页上页114115116117118119120121下页末页
热门关键字
搜索一下,找到相关课件或文库资源 3381 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有