点击切换搜索课件文库搜索结果(1281)
文档格式:PPT 文档大小:714.5KB 文档页数:39
二.不定积分的计算 利用不定积分的性质 换元法(第一、第二) 分部积分法 部分分式法
文档格式:PPT 文档大小:1.2MB 文档页数:42
一、利用直角坐标系计算二重积分 如果积分区域为:a≤x≤b,1(x)≤y≤φ2(x)
文档格式:PDF 文档大小:172.92KB 文档页数:15
含参变量常义积分的定义 设 yxf ),( 是定义在闭矩形 × dcba ],[],[ 上的连续函数,对于任意固 定的 ∈ dcy ],[ , yxf ),( 是 ba ],[ 上关于 x的一元连续函数,因此它在 ba ],[ 上的积分存在
文档格式:PDF 文档大小:236.62KB 文档页数:26
Beta函数 形如 B(p,q)=x-(1-x)-dx 的含参变量积分称为Beta函数,或第一类 Euler积分。 先讨论它的定义域。将Beta函数写成 B(, 9)=(d-x)dx+ x-(1-x)-dx, 当x→0时,x-(1-x)-~x-1,所以只有当p>0时右边第一个反常积 分收敛
文档格式:PDF 文档大小:131.75KB 文档页数:5
我们定义 Lebesgue积分的初衷之一是求函数下方图形G(/,E)(以非负函数 为例)的测度,然而到目前为止,我们只定义了可测函数的积分,是否有下方图 形G,B是可测集,因本身不是可测函数的f而未定义积分值呢?下述截面定理 将让我们打消此顾虑。为此,我们先引入截面概念
文档格式:PPT 文档大小:3.93MB 文档页数:208
第一节 对弧长的曲线积分 一、问题的提出 二、对弧长的曲线积分的概念 三、对弧长曲线积分的计算 四、几何与物理意义 第二节 对坐标的曲线积分 一、问题的提出 二、对坐标的曲线积分的概念 三、对坐标的曲线积分的计算 第三节 格林公式及其应用 一、区域连通性的分类 二、格林公式 三、简单应用 第四节 对面积的曲面积分 一、概念的引入 二、对面积的曲面积分的定义 三、计算法 第五节 对坐标的曲面积分 一、基本概念 二、概念的引入 三、概念及性质 四、计算法 五、两类曲面积分之间的联系 第六节 高斯公式 通量与散度 一、高斯公式 二、简单的应用 三、物理意义——通量与散度 第七节 斯托克斯公式环流量与旋度 一、斯托克斯(stokes)公式 二、简单的应用 三、物理意义---环流量与旋度
文档格式:PPT 文档大小:613.5KB 文档页数:14
9.4在极坐标系下二重积分的计算 在二重积分的计算中,最基本最常用的换元法是极坐标法
文档格式:PPT 文档大小:159KB 文档页数:9
通过对不均匀量(如曲边梯形的面积, 变速直线运动的路程)的分析,采用“分 割、近似代替、求和、取极限”四个基本 步骤确定了它们的值,并由此抽象出定积 分的概念,我们发现,定积分是确定众多 的不均匀几何量和物理量的有效工具。那 么,究竟哪些量可以通过定积分来求值呢? 我们先来回顾一下前章中讲过的方法和步 骤是必要的
文档格式:PDF 文档大小:141.18MB 文档页数:434
上册内容为极限理论和一元微积分,共十二章; 第一章 引论 第二章 数列极限 第三章 实数系的基本定理 第四章 函数极限 第五章 连续函数 第六章 导数与微分 第七章 微分学中值定理和Taylor定理 第八章 微分学的应用 第九章 不定积分 第十章 定积分 第十一章 积分学的应用 第十二章 广义积分
文档格式:PPT 文档大小:876.5KB 文档页数:29
有理函数的不定积分 形如Pm(x)的函数称为有理函数,这里pm(x)和qn(x)分别是m次和 an(x) n次多项式。在本节中,我们将通过介绍求一般有理函数的不定积分 的方法,证明这样的一个结论:有理函数的原函数一定是初等函数
首页上页117118119120121122123124下页末页
热门关键字
搜索一下,找到相关课件或文库资源 1281 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有