Aircraft Dynamics First note that it is possible to develop a very good approximation of a key motion of an aircraft(called the Phugoid mode) using a very simple balance between the kinetic and potential energies Consider an aircraft in steady, level fight with speed Uo and height ho
GY RoScoPES UPTo NoW HAVE CONSIDE RED PROBLEMS RELE VANT To THE RIG ID 6oDY 0YNAMICS THAT ARE IMPORTANT To AERoSPACE VEHI CLES USEO A BoDY FRAME THAT RDTATES WITH THE VEHICLE ANOTHER IMPORT ANT CLASS oF ARo BLEMS FB0 ES SUCH A5 Gγ Ro ScopEs RoτcRuV啊 HIGH SPIN RAT∈ ESSENTIALLY MASSLESS FRAME (CARDAN)
NUMERICAL SOLUTION GIEN A COMPLEX SET of OYNAMICS (t)=F(x) WHERE F() COULD BE A NONLINEAR FUNCTION IT CAN BE IMPOSS IBLE To ACTVALLY SOLVE FoR ( ExACTLY. OEVELOP A NUMERICAL SOLUTION. CANNED CoDES HELP US THIS TN MATLAB BUT LET US CONSDER THE BASiCS
Spring 2003 Generalized forces revisited Derived Lagrange s equation from d'Alembert's equation ∑m(8x+16y+22)=∑(Fx+F+F。=) Define virtual displacements sx Substitute in and noting the independence of the 8q,, for each
ATTITUDE MOTION -TORQVE FeEE MANE 0ISCUSSED THE ROTATIONAL MOTION FRDn 1 ERSPECTvE。FE”6o0 FRAME 一NE0T0F1A0 A WAy TO CONNECT THE MOTION To THE INEATIAL FRAME So WE CAN DESCRI BE THE ACTUAL MOTION TYPICALLY DoNE 6y DESC RI BING MOTION oF NEHICLE ABoVT THE
Spring 2003 Lagrange's equations Joseph-Louis lagrange 1736-1813 http://www-groups.dcs.st-and.ac.uk/-history/mathematicians/lagranGe.html Born in Italy. later lived in berlin and paris Originally studied to be a lawyer Interest in math from reading halleys 1693 work on
EROSPACE DYNAMiCS EXAMPLE: GWE ACCELERATIoN of THE TIP 0F认ERU0毛R人TM5Hc人AF LDk小 G For A650LUT # CCELER升T10 N UTH RES/∈ct T0wE工NERT1 AL FRAME (∈ TH IN THiS CASE)