点击切换搜索课件文库搜索结果(1707)
文档格式:PDF 文档大小:848.42KB 文档页数:13
《工程科学学报》:机器学习方法在产品质量自动判级中的应用
文档格式:PDF 文档大小:825.67KB 文档页数:10
本文根据研制TYYG-20型液压凿岩机过程中的体会及测试结果,就机器的类型、结构及设计中一些主要问题,作了初步分析。其中有的问题已在测试中得到验证,有的问题尚待进一步研究,但可参照进行基本的设计计算
文档格式:PDF 文档大小:549.76KB 文档页数:6
铁水扒渣检测系统是一套基于机器视觉的扒渣评级系统,其主要作用是采用高分辨率摄像器观察铁水罐中实时情况,通过工控机采集成像,分析图像中铁渣的厚度和范围,并对照评级工艺条件评判出扒渣的等级.本系统提高在线扒渣等级评判的自动化水平,降低工人经验判别不稳定因素的影响,实现工人的劳动保护
文档格式:PDF 文档大小:5.95MB 文档页数:6
针对传统算法在抗光照变化影响、大位移光流和异质点滤除等方面的不足,从人类视觉认知机理出发,提出了一种基于机器学习和生物模型的运动自适应V1-MT (motion-adaptive V1-MT,MAV1MT)序列图像光流估计算法.首先,引入基于ROF模型的结构纹理分解(structure-texture decomposition,STD)技术,有效解决了光照和色彩变化的影响.其次,利用多V1细胞加权组合及非线性正则化模拟MT细胞模型,并结合岭回归训练学习得到运动自适应的权重,解决对目标的运动速度感知问题.最后,引入由粗到精的增强方法和图像金字塔局部运动估计采样,将V1-MT运动估计模型应用于实际大位移视频序列.理论分析和实验结果表明,新方法能更加拟合人眼视觉信息处理特性,对视频序列具有普适、有效、鲁棒的运动感知性能
文档格式:PDF 文档大小:546.62KB 文档页数:7
本文从冶金热力学数据库应用系统如何在M-150计算机上实现的角度,介绍它的机器环境和系统构成。它由四部分构成:1.数据库:存贮有399种二元系合金和2211种化合物(或元素)的热力学数据。2.数据管理系统:主要完成对数据库中所有数据检索、修改、插入、删除等任务。3.应用程序库:由七个复杂的计算程序组成,完成化学平衡体系的热力学性质的计算。4.监控系统:协调整个系统,使之正常工作
文档格式:PDF 文档大小:1.35MB 文档页数:8
研究了多目标多阶段混合流水车间的紧急订单插单重调度问题,综合考虑工件批量、刀具换装时间、运输能力等约束。先以最小化订单完工时间和最小化总运输时间为双目标建立静态初始订单调度模型,再针对紧急订单插单干扰,增加最小化总加工机器偏差值目标,建立三目标重调度优化模型,并分别用NSGA-II算法与融合基于事件驱动的重调度策略和重排插单策略的NSGA-III算法对两个模型进行求解。最后,以某实际船用管类零件生产企业为案例,先对NSGA-II算法和NSGA-III算法的性能进行评估,得到NSGA-II算法更适用于解决双目标优化问题而NSGA-III算法在解决三目标优化问题时表现更优的结论,再将所建模型与所提算法应用于该企业的十组插单案例中,所得优化率接近三分之一,验证了实用性和有效性
文档格式:PDF 文档大小:723.23KB 文档页数:9
网络环境下的恶意软件严重威胁着工控系统的安全,随着目前恶意软件变种的逐渐增多,给工控系统恶意软件的检测和安全防护带来了巨大的挑战。现有的检测方法存在着自适应检测识别的智能化程度不高等局限性。针对此问题,围绕威胁工控系统网络安全的恶意软件对象,本文通过结合利用强化学习这一高级的机器学习算法,设计了一个检测应用方法框架。在实现过程中,根据恶意软件行为检测的实际需求,充分结合强化学习的序列决策和动态反馈学习等智能特征,详细讨论并设计了其中的特征提取网络、策略网络和分类网络等关键应用模块。基于恶意软件实际测试数据集进行的应用实验验证了本文方法的有效性,可为一般恶意软件行为检测提供一种智能化的决策辅助手段
文档格式:PDF 文档大小:798.92KB 文档页数:7
提出基于双向长短期记忆网络(bidirectional long short-term memory,BiLSTM)和前向神经网络的融合模型完成公共安全事件的触发词识别任务.首先通过BiLSTM提取整段文本的高层语义特征,避免了以往机器学习方法需要人工提取特征的问题,其次采用特征拼接并在前向神经网络中识别并分类事件触发词.实验结果表明相较于基准模型,本文方法在中文突发事件语料库(Chinese emergency corpus,CEC)上取得了更为突出的性能,Micro-F1值为78.47%.此外本文讨论了不同拼接特征在触发词识别任务中的重要性,对文本分析中3类特征(词性、句法、实体)的重要程度进行了比较和分析,得出句法特征对于事件触发词识别任务助益最大的结论
文档格式:PDF 文档大小:729.77KB 文档页数:8
医疗实体识别是电子病历文本信息抽取的基本任务。针对中文电子病历文本复合实体较多、实体长度较长、句子成分缺失严重、实体边界不清的语言特点以及标注语料难以获取的现状,提出了一种基于领域词典和条件随机场(CRF)的双层标注模型。该模型通过对外部资源的统计分析构建医疗领域词典,再结合条件随机场,进行了两次不同粒度的标注,将领域词典识别的准确性和机器学习的自动性融为一体,从中文电子病历文本中识别出疾病、症状、药品、操作四类医疗实体。该模型在测试数据中的宏精确率为96.7%、宏召回率为97.7%、宏F1值为97.2%。同时对比分析了采用注意力机制的深度神经网络的识别效果,因受到领域数据集大小的限制,在该测试数据集中后者表现不佳。实验结果表明了该双层标注模型对中文医疗实体识别的高效性
文档格式:PDF 文档大小:0.99MB 文档页数:9
多聚焦图像融合是计算机视觉领域中的一个重要分支,旨在使用图像处理技术将同一场景下的聚焦不同目标的多张图像中各自的清晰区域进行融合,最终获得全清晰图像。随着以深度学习为代表的机器学习理论的突破,卷积神经网络被广泛应用于多聚焦图像融合领域,但大多数方法仅关注网络结构的改进,而使用简单的两两串行融合方式,降低了多图融合的效率,并且在融合过程中存在的失焦扩散效应也严重影响了融合结果的质量。针对上述问题,在显微成像分析的应用场景下,提出了一种最大特征图空间频率融合策略,通过在基于无监督学习的卷积神经网络中增加后处理模块,规避了两两串行融合中冗余的特征提取过程,实验证明该策略显著提高了多张图像的多聚焦图像融合效率。并且提出了一种矫正策略,在保证融合效率的情况下可有效缓解失焦扩散效应对融合图像质量的影响
首页上页148149150151152153154155下页末页
热门关键字
搜索一下,找到相关课件或文库资源 1707 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有