点击切换搜索课件文库搜索结果(3221)
文档格式:DOC 文档大小:229KB 文档页数:4
12.3.2用一个多项式的根和另一个多项式计算结式的公式 命题设 f(x)=ax+a1x-+…+an(a≠0 (x) box\+b- + (bo=0) 如果f(x),g(x)在C[x]中的分解式为 g()= bo (x-B) ).(x-)(1) 那么 R(f,g)=ag(a)=(-1)f(B)(*) 证明在数域K上的n+m+1元多项式环K[x,y1yn21m]中,令 f(x,y,yn)=a(x-y)…(x-yn)(2) g(x,z1,m)=b(x-z)…(x-m)(3)
文档格式:DOC 文档大小:143.5KB 文档页数:2
第四章4-3线性映射与线性变换(续) 4.3.4线性变换的定义与运算 定义线性空间到自身的线性映射称为线性变换,记Hom(V,V)为Endr(V)或End (V)。 例恒同变换 E:V→V, >a. 例投影(射影)设V=V1V2,Va∈V,a=a+a2(a1eV,a2∈V2),定义V到 V的投影P(a)=a1,V到V2的投影P2(a)=a2 定义End(V)中的运算(加法、数乘和乘法) 加法定义为(A+)(a)=A(a)+B(a)(Va∈V) 数乘定义为(kA)(a)=k(A(a)),其中k∈K; 乘法(复合)定义为(AB)(a)=A(B(a)
文档格式:DOC 文档大小:245KB 文档页数:3
第十二章张量积与外代数 12-1多重线性映射 12.1.1线性空间的一组基的对偶基的定义 定义12.1对偶空间 设v是k上n维线性空间,E2,Sn是的一组基,则线性函数 f:V→K(K为数域)被f在此组基下的映射法则决定,即f()f(2)f(n)已给 定。现设V内全体线性函数组成的集合为V,则在V内定义加法与数乘如下: (i)f,,+)(a)= f(a)+g(a); (iif EV', k K, f )(a)= (a). 则V关于上述加法、数乘组成K上的线性空间,称为V的对偶空间,记作o(V,K 定义12.2对偶基 假设同定义12.1,定义V内n个线性函数
文档格式:PDF 文档大小:26.24MB 文档页数:504
本教材第2版为普通高等教育“十五”国家级规划教材,在国内同类教材中有着非常广泛和积极的影响。本版是在第2版的基础上经过较大的修改编写而成的,内容得到了必要而合理的调整,逻辑结构更加清晰明了本教材分上、下两册。本书为上册,内容包括实数和数列极限,函数的连续性,函数的导数。Taylor定理,求导的逆运算。函数的积分。积分学的应用,多变量函数的连续性,多变量函数的微分学,以及多项式的插值与逼近初步(附录)。书中配有丰富的练习题,可供学生巩固基础知识;同时也有适量的问题,可供学有余力的学生练习,并且书后附有问题的解答或提示,以供参考
文档格式:PDF 文档大小:3.13MB 文档页数:195
一、 学科平台课程 1 《高级语言程序设计》 二、 专业课程 1 《计算机导论》 2 《离散数学》 3 《电子技术》 4 《电子技术实验》 5 《计算机组成原理》 6 《数据结构》 7 《数据库系统原理 A》 8 《软件工程概论》 9 《操作系统》 10《算法设计与分析》 11《计算机网络》 12《软件质量保证与测试》 13《软件项目管理与案例分析》 14《人机交互技术》 15《软件系统分析与设计》 16《软件过程与管理》 17《软件体系结构》 三、 个性化发展课程 1 《可视化项目开发技术》 2 《Web 开发技术》 3 《嵌入式系统原理与应用 A》 4 《移动平台应用开发》 5 《数据挖掘》 6 《Python 程序设计》 7 《人工智能》 8 《深度学习》 9 《大数据处理基础》 10《企业信息化系统分析》 11《三维动画原理与开发技术》 12《编译原理》 13《科技论文写作》 14《工程经济学》 15《前沿知识研讨》 16《职业能力拓展》 17《企业级开发技术》 四、 实践环节 1 《认识实习》 2 《小型软件项目综合课程设计》 3 《软件项目实践》 4 《生产实习》 5 《毕业实习》 6 《毕业设计》
文档格式:DOC 文档大小:77.5KB 文档页数:1
第四章4-4线性变换的特征值与特征向量 4.4.1线性变换的特征值与特征向量的定义 定义若存在非零向量ξ∈V,使得对于某个∈K,有A5=5,则称ξ是A的属 于特征值λ的特征向量。 命题线性空间V中属于确定的特征值λ的特征向量(添加上零向量)构成子空间。 证明设51,52是属于的特征向量,Vk,∈K,则 A(k5+2)=k()+a(2)=k+2=(k5+152), 证毕。 定义线性空间V中属于确定的特征值λ的特征向量(添加上零向量)构成子空间称 为属于特征值的特征子空间,记为V 4.4.2特征值和特征子空间的计算、特征多项式
文档格式:DOC 文档大小:254.5KB 文档页数:3
第五章5-1双线性函数 5.1.1线性空间上的线性函数的定义 1、线性函数的定义 定义设V为数域K上的线性空间,fV→K为映射,满足 f(a+B)=f(a)+f(),va,B∈V;f(ka)kf(a),∈k,aev,则称f为由V 到K的一个线性函数(即f为V到K的一个线性映射) 如同一般的线性映射,有以下事实: i)、f:V→K是线性函数当且仅当f(ka+1B)=kf(a)+lf(B) i)、f(0)=0; i)、f(-a)=-f(a) 命题数域K上的n维线性空间V上的线性函数的全体关于函数加法和数乘构成K上 的n维线性空间
文档格式:DOC 文档大小:251.5KB 文档页数:3
5.1.3线性空间上的对称双线性函数、二次型函数的定义 定义若f为V上的双线性函数且f(a,B)=f(B,a),则称f为V上的对称双线性 函数。 命题f为对称双线性函数,当且仅当f在任意一组基下的矩阵为对称矩阵,当且仅 当f在某一组基下的矩阵为对称矩阵。 证明任取V的一组基1,2,…,n,任取a,B∈V,设它们在此组基下的坐标所构成 的列向量分别为X和Y,f在此组基下的矩阵记为A,若f为对称双线性函数,则由定
文档格式:DOC 文档大小:537.5KB 文档页数:6
第九章元多项式环 9-1一元多项式环的基本理论 911域上的一元多项式环的定义 定义91设K是一个数域,x是一个不定元。下面的形式表达式 f(x) (其中an3a1,a2属于K,且仅有有限个不是0)称为数域K上的一个不定元x的一元多 式。数域K上一个不定元x的多项式的全体记作K[x] 下面定义K[x]内加法、乘法如下 加法设
文档格式:DOC 文档大小:560.5KB 文档页数:7
9.2.2Qx]内多项式的因式分解 定义9.12定义Z[x]={axn+a1x+…+∈Z,i=01n}。 假设f(x)∈Z[x],f(x)≠0及±1。如果g(x)h(x)∈[x],使得f(x)=g(x)h(x), 且g(x)≠±1,h(x)≠±1,则称f(x)在Z[x]内可约,否则称f(x)在Z[x]内不可约 定义9.13设 f(x)=ax+axn+…+an∈Z[x], 这里n≥1。如果(aa1an)=1,则称f(x)是一个本原多项式。 命题Q[x]内一个非零多项式f(x)可以表成一个有理数k和一个本原多项式f(x)的
首页上页160161162163164165166167下页末页
热门关键字
搜索一下,找到相关课件或文库资源 3221 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有