点击切换搜索课件文库搜索结果(1714)
文档格式:DOC 文档大小:1.08MB 文档页数:34
一、线性变换的定义线性空间V到自身的映射称为V的一个变换定义1线性空间V的一个变换A称为线性变换,如果对于V中任意的元素a,B和数域P中任意数k,都有 (1) 一般用花体拉丁字母A,B,表示V的线性变换,A(a)或a代表元素a在 变换下的像定义中等式
文档格式:DOC 文档大小:245KB 文档页数:3
第十二章张量积与外代数 12-1多重线性映射 12.1.1线性空间的一组基的对偶基的定义 定义12.1对偶空间 设v是k上n维线性空间,E2,Sn是的一组基,则线性函数 f:V→K(K为数域)被f在此组基下的映射法则决定,即f()f(2)f(n)已给 定。现设V内全体线性函数组成的集合为V,则在V内定义加法与数乘如下: (i)f,,+)(a)= f(a)+g(a); (iif EV', k K, f )(a)= (a). 则V关于上述加法、数乘组成K上的线性空间,称为V的对偶空间,记作o(V,K 定义12.2对偶基 假设同定义12.1,定义V内n个线性函数
文档格式:PPT 文档大小:780KB 文档页数:16
向量空间有两种运算:加法和数量乘法,合起来成为线性 运算。因此向量空间也可称为线性空间。向量空间元素之间的最基本的关系就体现在运算上即所谓线性关系上。因此讨论向量之间的线性关系在研究向量空间时起着极为重要的作用。本节仅限于在F中进行讨论
文档格式:DOC 文档大小:188.5KB 文档页数:4
北京大学:《高等代数》课程教学资源(讲义)第四章 线性空间与线性变换 4.1 线性空间的基本概念 4.1.4 线性空间的基变换,基的过渡矩阵 4.2子空间与商空间 4.2.1 线性空间的子空间的定义
文档格式:DOC 文档大小:162KB 文档页数:2
4.2.7线性空间关于一个子空间的同余关系 定义给定K上的线性空间V,M是V的子空间,设a是V的一个向量。如果V的 一个向量a'满足:a-a∈M,则称a'与a模M同余,记作a'=a(modM) 易见,同余关系是V上的一个等价关系
文档格式:DOC 文档大小:254.5KB 文档页数:3
5.1.1线性空间上的线性函数的定义 1、线性函数的定义 定义设V为数域K上的线性空间,fV→K为映射,满足f(a+B)=f(a)+f(),va,B∈V;f(ka)kf(a),∈k,aev,则称f为由V到K的一个线性函数(即f为V到K的一个线性映射)如同一般的线性映射,有以下事实:
文档格式:DOC 文档大小:126KB 文档页数:3
一、线性变换的定义 线性空间V到自身的映射称为V的一个变换 定义1线性空间V的一个变换A称为线性变换,如果对于V中任意的元 素a,和数域P中任意数k,都有 A(a+B)=(a)+A(B);
文档格式:DOC 文档大小:84.5KB 文档页数:2
一、线性子空间的概念 定义 7 数域 P 上的线性空间 V 的一个非空子集合 W 称为 V 的一个线性子空 间(或简称子空间),如果 W 对于 V 的两种运算也构成数域 P 上的线性空间
文档格式:DOC 文档大小:854.5KB 文档页数:19
线性函数 定义1设V是数域P上的一个线性空间,f是V到P的一个映射,如果f 满足 1)f(a+)=f(a)+f() 2) f(ka)=(a), 式中a,B是V中任意元素,k是P中任意数,则称f为V上的一个线性函数 从定义可推出线性函数的以下简单性质: 1.设f是v上的线性函数,则f(0)=0,f(-a)=-f(a) 2.如果B是a1,a2…,a的线性组合:
文档格式:PPT 文档大小:435KB 文档页数:17
一、 线性变换的乘积 二、 线性变换的和 三、 线性变换的数量乘法 四、 线性变换的逆 五、 线性变换的多项式
首页上页162163164165166167168169下页末页
热门关键字
搜索一下,找到相关课件或文库资源 1714 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有