In this lecture we will look at some other common systems of coordinates. We will present polar coordinates in two dimensions and cylindrical and spherical coordinates in three dimensions. We shall see that these systems are particularly useful for certain classes of problems Like in the case of intrinsic coordinates presented in the previous lecture, the reference frame changes from point to point. However, for the coordinate systems to be presented below, the reference frame depends only on the position of the particle. This is in contrast with the intrinsic coordinates, where the reference frame is a function of the position, as well as the path
We will start by studying the motion of a particle. We think of particle as a body which has mass, but has negligible dimensions. Treating bodies as particles is, of course, an idealization which involves an approximation. This approximation may be perfectly acceptable in some situations and not adequate in some other cases. For instance, if we want to study the motion of planets it is common to consider each planet as a particle