点击切换搜索课件文库搜索结果(1737)
文档格式:PPT 文档大小:4.38MB 文档页数:160
第一节 中值定理 一、罗尔中值定理 二、拉格朗日中值定理 三、柯西中值定理 第二节 洛必达法则 第三节 泰勒(Taylor)定理 一、问题的提出 二、Pn和Rn的确定 三、泰勒中值定理 四、简单应用 第四节 函数单调性的判定法 一、单调性的判别法 二、单调区间求法 第五节 函数极值及其求法 一、函数极值的定义 二、函数极值的求法 第六节 最大值、最小值问题 一、最值的求法 二、应用举例 第七节 曲线的凹凸与拐点 一、曲线凹凸的定义 二、曲线凹凸的判定 三、曲线的拐点及其求法 第九节 曲率 一、弧微分 二、曲率及其计算公式 三、曲率圆与曲率半径
文档格式:PDF 文档大小:16.33MB 文档页数:192
第一节多元函数的基本概念 一、平面点集 二、多元函数概念 三、多元函数的极限 四、多元函数的连续性 第二节偏导数 一、偏导数的定义及其计算法 二、高阶偏导数 第三节全微分 一、全微分的定义 二、全微分在近似计算中的应用 第四节多元复合函数的求导法则 一、多元复合函数求导的链式法则 二、多元复合函数的全微分 第五节隐函数的求导公式 一、一个方程的情形 二、方程组的情形 第五节多元函数微分学的几何应用 一、一元向量值函数及其导数 二、空间曲线的切线与法平面 三、曲面的切平面与法线 第七节方向导数与梯度 一、方向导数 二、梯度 三、物理意义 第七节 一、多元函数的极值 二、最值应用问题 三、条件极值
文档格式:PDF 文档大小:871.36KB 文档页数:136
第一节 多元函数的基本概念 一、区域 二、多元函数的概念 三、多元函数的极限 四、多元函数的连续性 三、小结 一、偏导数的定义及其计算法 二、高阶偏导数 第二节 偏导数 第三节 全微分 第四节 多元复合函数的求导法则 一、多元复合函数求导的链式法则 二、多元复合函数的全微分 第五节 隐函数的求导方法 一、一个方程所确定的隐函数及其导数 二、方程组所确定的隐函数组及其导数 第六节 多元函数微分学的几何应用 一、空间曲线的切线与法平面 二、曲面的切平面与法线 第七节 方向导数与梯度 一、问题的提出 三、梯度 二、方向导数 第八节 多元函数的极值及其求法 一、多元函数的极值 二、最值应用问题 三、条件极值
文档格式:PDF 文档大小:1.33MB 文档页数:239
(一)理论课程 1《空间解析几何》 2《离散数学》 3《时间序列分析》 4《数值计算方法》 5《运筹与优化》 6《Python 程序设计》 7《常微分方程》 8《大数据技术原理及应用》 9《复变函数论》 10《概率统计》 11《高等代数》 12《面向对象程序设计》 13《数据结构与算法》 14《数据库原理及应用》 15《数据挖掘》 16《数理统计》 17《数学分析(1)》 18《数学分析(2)》 19《数学建模(1)》 20《数学建模(2)》 21《数学软件及应用》 (二)实验课程 22《时间序列分析》 23《数据结构与算法》 24《数学软件及应用》 25《数值计算方法》 26《Python 程序设计》 27《大数据技术原理及应用》实验 28《面向对象程序设计》 29《数据库原理及应用》课程 30《数据挖掘》 31《数理统计》 (三)实践课程 32《专业教育》 33《web 数据挖掘与电子商务项目实训》 34《技能实训》教学大纲 35《客户数据分析项目设计》 36《数学建模(1)》 37《数学建模(2)》 38《中文文本数据挖掘项目实训》 39《综合项目实训》教学大纲 40《毕业设计(论文)》教学大纲 41《毕业实习》教学大纲
文档格式:PPT 文档大小:3.93MB 文档页数:208
第一节 对弧长的曲线积分 一、问题的提出 二、对弧长的曲线积分的概念 三、对弧长曲线积分的计算 四、几何与物理意义 第二节 对坐标的曲线积分 一、问题的提出 二、对坐标的曲线积分的概念 三、对坐标的曲线积分的计算 第三节 格林公式及其应用 一、区域连通性的分类 二、格林公式 三、简单应用 第四节 对面积的曲面积分 一、概念的引入 二、对面积的曲面积分的定义 三、计算法 第五节 对坐标的曲面积分 一、基本概念 二、概念的引入 三、概念及性质 四、计算法 五、两类曲面积分之间的联系 第六节 高斯公式 通量与散度 一、高斯公式 二、简单的应用 三、物理意义——通量与散度 第七节 斯托克斯公式环流量与旋度 一、斯托克斯(stokes)公式 二、简单的应用 三、物理意义---环流量与旋度
文档格式:PDF 文档大小:27.64MB 文档页数:353
第一节映射与函数 (Mapping and Function) 一问题的提出 二 函数基本概念 三 函数的几种特性 四五 复合函数、反函数 小结与思考判断题 第二节数列的极限 一、概念的引入 二、数列的定义 三、数列的极限 四、数列极限的性质 五、小结 第三节 函数的极限 一、函数极限定义 二、函数极限的性质 三、小结思考判断题 第四节 无穷小与无穷大 一、无穷小 二、无穷大 三、无穷小与无穷大的关系 四、小结思考题 第五节 极限运算法则 一、无穷小的运算性质 二、极限四则运算法则 三、求极限方法举例 四、复合函数的极限运算法则 五、小结思考题 第六节极限存在准则两个重要极限 一 极限存在的准则I 重要极限I 二极限存在的准则Ⅱ 重要极限Ⅱ 三小结与思考判断题 第七节无穷小的比较 问题的提出 二无穷小的比较 三等价无穷小替换 四小结与思考判断题 第八节函数的连续性与间断点 一、函数的连续性 二、函数的间断点 三、小结思考题 第九节连续函数的运算与 初等函数的连续性 连续函数的和、差、积、商的 连续性 反函数与复合函数的连续性 四小结与思考判断题 第十节 闭区间上连续函数的性质 有界性与最大值最小值定理 零点定理与介值定理 三小结思考判断题
文档格式:PDF 文档大小:10.33MB 文档页数:137
第一节微分方程的基本概念 (Basic concept of differential equations) 一问题的提出 二微分方程的定义 (Definition of differential equations) 三 主要问题——求方程的解 四 小结思考判断题 第二节可分离变量的微分方程 (Differential equations of the variables separated) 可分离变量的微分方程 二 典型例题 小结与思考题 第三节齐次方程 (Homogeneous equation) 一齐次方程 二可化为齐次的方程 三小结思考题 第四节一阶线性微分方程 (Linear differential equation of first order) 一线性方程 (Linear differential equation) 二伯努利方程 (Bernoulli differential equation) 小结 思考判断题 第五节全微分方程 (Total differential equation) -全微分方程及其求法 二积分因子法 小结与思考题 第六节可降阶的高阶微分方程 y(\=f(x,y,..,y(\-)型 二y\=f(x,y',.·,y(\-①)型 恰当导数方程 四齐次方程 五小节与思考题 第七节高阶线性微分方程 (Higher linear differential equation) 概念的引入 线性微分方程的解的结构 降阶法与常数变易法 四小结思考题 第八节常系数齐次线性微分方程 (Constant coefficient homogeneous linear differential equation) 一定义(Definition) 二二阶常系数齐次线性方程解法 三n阶常系数齐次线性方程解法 四小结与思考题 第九节常系数非齐次线性微分方程 (Constant coefficient non-homogeneous linear differential equation) 一f(x)=exPm(x)型 二f(x)=ex[P,(x)cos cax+P,(x)sin cax]型 三小结思考题
文档格式:PDF 文档大小:1.37MB 文档页数:308
全书共六章,可大致分为三个部分:第一部分,包括引言和第一章基本概念,它是全书的基础,在以后各章都要用到,应予以充分重视;第二部分,包括第二、三两章,介绍含一个代数运算的群的理论.其中第二章介绍群的最基本的知识;第三章则进一步介绍正规子群和群的同态与同构,以及和它们相关联的群论中最基本最重要的定理,如群的同态和同构定理,共轭、正规化子和中心化子,Sylow定理和有限交换群基本定理等等;第三部分,包括第四、五、六三章,介绍含有两个代数运算的环与域的理论.其中第四章介绍环的基本知识;第五章介绍环论中一个特殊问题———惟一分解整环内的因子分解理论,并由此介绍了两种特殊的环类,即主理想整环和欧氏环;第六章介绍域,一种加强条件的环,并且主要介绍代数扩域,特别是有限次扩域和有限域
文档格式:PPT 文档大小:5.28MB 文档页数:224
第一节 对弧长的曲线积分 一、对弧长的曲线积分的概念与性质 二、对弧长的曲线积分的计算法 第二节 对坐标的曲线积分 一、对坐标的曲线积分的概念与性质 二、 对坐标的曲线积分的计算法 三、两类曲线积分之间的联系 第三节 格林公式及其应用 一、格林公式 二、平面上曲线积分与路径无关的等价条件 三、二元函数的全微分求积 第四节 对面积的曲面积分 一、对面积的曲面积分的概念与性质 二、对面积的曲面积分的计算法 第五节 对坐标的曲面积分 一、 对坐标的曲面积分的概念与性质 二、对坐标的曲面积分的计算法 三、两类曲面积分的联系 第六节 高斯公式 Green 公式 Gauss 公式 推广
文档格式:PDF 文档大小:5.24MB 文档页数:499
第一章 复变函数和解析函数 第二章 复变函数积分 第三章 复变函数级数 第四章 定积分的计算 第五章 δ函数、线性常微分方程的级数解法和本征值问题 第六章 数学物理方程的定解问题 第七章 行波法和分离变量法 第八章 积分变换法 第九章 球坐标下的分离变量法,勒让德多项式和球谐函数 第十章 柱坐标下的分离变量法,贝塞耳函数 第十一章 平面静电场问题和保角变换法 第十二章 非齐次方程的定解问题和格林函数法
首页上页162163164165166167168169下页末页
热门关键字
搜索一下,找到相关课件或文库资源 1737 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有