Model Uncertain Prior analysis assumed a perfect model. What if the model is in correct= actual system dynamics GA(s)are in one of the sets Multiplicative model G,(s=GN(s(1+E(s)) Additive model Gp(S)=GN(S)+E(s) where
GY RoScoPES UPTo NoW HAVE CONSIDE RED PROBLEMS RELE VANT To THE RIG ID 6oDY 0YNAMICS THAT ARE IMPORTANT To AERoSPACE VEHI CLES USEO A BoDY FRAME THAT RDTATES WITH THE VEHICLE ANOTHER IMPORT ANT CLASS oF ARo BLEMS FB0 ES SUCH A5 Gγ Ro ScopEs RoτcRuV啊 HIGH SPIN RAT∈ ESSENTIALLY MASSLESS FRAME (CARDAN)
LECTURE+ 12 RIGID BODY OYNAAICS 工 MPLICAT IONsF GENERAL ROTATIONAL OYWMICS EJLER's EQUATIN of MOTION TORQVE FREE SPECIAL CASES. PRIMARY LESSONS: 30 ROTATONAL MOTION MUCH MORE COMPLEX THAN PLANAR (20) EULER'S E.o.M. PROVIOE STARTING POINT FoR ALL+ OYwAmIcs SOLUTINS To EvlER's EQuATIONS ARE COMPLEX BUT WE CAN OEVE LOP GooO GEOMETRIC VISUALIZATION TOOLS
ATTITUDE MOTION -TORQVE FeEE MANE 0ISCUSSED THE ROTATIONAL MOTION FRDn 1 ERSPECTvE。FE”6o0 FRAME 一NE0T0F1A0 A WAy TO CONNECT THE MOTION To THE INEATIAL FRAME So WE CAN DESCRI BE THE ACTUAL MOTION TYPICALLY DoNE 6y DESC RI BING MOTION oF NEHICLE ABoVT THE
Spring 2003 Generalized forces revisited Derived Lagrange s equation from d'Alembert's equation ∑m(8x+16y+22)=∑(Fx+F+F。=) Define virtual displacements sx Substitute in and noting the independence of the 8q,, for each
Spring 2003 Example Given: Catapult rotating at a constant rate(frictionless, in the horizontal plane) Find the eom of the particle as it leaves the tube
Introduction We started with one frame (B) rotating and accelerating with respect to another(), and obtained the following expression for the absolute acceleration