点击切换搜索课件文库搜索结果(200)
文档格式:PDF 文档大小:4.18MB 文档页数:42
 4.1 The basic concept of association rules  4.2 Low-dimensional binary association rules  4.3 Multi-level association rules  4.4 Multidimensional association rules  4.5 The Affinity analysis based on the association mining
文档格式:PDF 文档大小:1.37MB 文档页数:75
隐马尔科夫模型的定义 HMM模型的三个基本问题 EM算法 前向后向算法 鲍姆-韦尔奇算法 维比特算法
文档格式:PPT 文档大小:2.25MB 文档页数:64
◼ Pattern Mining: A Road Map ◼ Pattern Mining in Multi-Level, Multi-Dimensional Space ◼ Constraint-Based Frequent Pattern Mining ◼ Mining High-Dimensional Data and Colossal Patterns ◼ Mining Compressed or Approximate Patterns ◼ Pattern Exploration and Application ◼ Summary
文档格式:PDF 文档大小:2.25MB 文档页数:55
1、量子力学基本回顾 2、复合体系描述 3、量子测量及相关问题 §1.1 态叠加原理 ➢ 波叠加 经典 合成的波中有各种成分 相干性 量子 相干性 新特点 §1.2 矩阵力学基础——力学量和算符 §1.3 量子测量及相关问题 1.3.1量子测量基础 1.3.2广义测量和POVM测量
文档格式:PPT 文档大小:1.15MB 文档页数:57
◼ Data Warehouse: Basic Concepts ◼ Data Warehouse Modeling: Data Cube and OLAP ◼ Data Warehouse Design and Usage ◼ Data Warehouse Implementation ◼ Data Generalization by Attribute-Oriented Induction ◼ Summary
文档格式:PPT 文档大小:423.5KB 文档页数:70
Motivation: Why data mining? What is data mining? A Multi-Dimensional View of Data Mining What Kinds of Data Can Be Mined? What Kinds of Patterns Can Be Mined? What Kinds of Technologies Are Used? What Kinds of Applications Are Targeted? Major Issues in Data Mining A Brief History of Data Mining and Data Mining Society Summary
文档格式:PPT 文档大小:275KB 文档页数:51
• 多层分布式体系结构 • 中间件技术 • 构件技术 • XML • Web服务 • 数据仓库 • 数据挖掘 • 工作流技术 • 视频会议
文档格式:PPT 文档大小:102KB 文档页数:29
15.1 概述 15.2 数据挖掘和数据中心库 15.3 数据仓库的支持工具 15.4 数据仓库的实现步骤 15.5 数据的粒度、分割和元数据 15.6 本章小结
文档格式:PPT 文档大小:7.14MB 文档页数:47
• Data Mining – From data warehousing to data mining. – Data pre-processing and data mining life-cycle. – Association and sequence analysis; classification and clustering. – Fuzzy Logic, Neural Networks, and Genetic Algorithms. – Mining Complex Data. • OLAP mining; spatial data mining; text mining; time-series data mining; web mining; visual data mining. • Data warehousing. – Introduction; basic concepts of data warehousing; data warehouse vs. Operational DB; data warehouse and the industry. – Architecture and design; two-tier and three￾tier architecture; star schema and snowflake schema; data capturing, replication, transformation and cleansing. – Data characteristics; metadata; static and dynamic data; derived data. – Data Marts; OLAP; data mining; data warehouse administration
首页上页1314151617181920下页末页
热门关键字
搜索一下,找到相关课件或文库资源 200 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有