点击切换搜索课件文库搜索结果(2691)
文档格式:PDF 文档大小:172.92KB 文档页数:15
含参变量常义积分的定义 设 yxf ),( 是定义在闭矩形 × dcba ],[],[ 上的连续函数,对于任意固 定的 ∈ dcy ],[ , yxf ),( 是 ba ],[ 上关于 x的一元连续函数,因此它在 ba ],[ 上的积分存在
文档格式:PDF 文档大小:449.96KB 文档页数:53
Green 公式 设L为平面上的一条曲线,它的方程是 = + tytxt )()()( jir ,α ≤ t ≤ β 。 如果 α = rr β )()( ,而且当 ),(, tt 21 ∈ α β , 21 ≠ tt 时总成立 )()( 1 2 ≠ rr tt ,则称 L为简单闭曲线(或 Jordan 曲线)。这就是说,简单闭曲线除两个端 点相重合外,曲线自身不相交
文档格式:PDF 文档大小:391.06KB 文档页数:40
第二类曲线积分 设L为空间中一条可求长的连续曲线,起点为 A,终点为B(这 时称L为定向的)。一个质点在力 F = i + j + zyxRzyxQzyxPzyx ),,(),,(),,(),,( k 的作用下沿L从 A移动到B , 我们要计算F zyx ),,( 所作的 功
文档格式:PDF 文档大小:321.1KB 文档页数:29
无界区域上的反常重积分 设 D为平面 2 R 上的无界区域,它的边界是由有限条光滑曲线组 成的。假设 D上的函数 f xy (,) 具有下述性质:它在 D中有界的、可 求 面积的子区域上可积
文档格式:PDF 文档大小:376.41KB 文档页数:41
曲线坐标 设U 为uv平面上的开集,V 是xy平面上开集,映射 T: ( , ), ( , ) x = x uv y yuv = 是U 到V 的一个一一对应,它的逆变换记为T u uxy v vxy − = = 1: ( , ), ( , )。 在U 中取直线u u = 0,就相应得到xy平面上的一条曲线 x xu v y yu v = ( , ), ( , ) 0 0 = , 称之为v -曲线;同样,取直线v v = 0 ,就相应得到xy平面上的u -曲线, x xuv y yuv = ( , ), ( , ) 0 0 =
文档格式:PDF 文档大小:314.31KB 文档页数:29
在一元定积分中已经学过计算曲边梯形等平面图形的面积,但是 并不能将其简单照搬到一般的平面点集上,因为一般平面点集是否有 面积还是一个问题。为此,先引入面积的定义
文档格式:PPT 文档大小:297.5KB 文档页数:13
一、广义多项式与权系数 二、一般最小二乘逼近问题的提法 三、正规方程组 四、小结
文档格式:PDF 文档大小:322.17KB 文档页数:29
无条件极值 定义 12.6.1 设 D n ∈R 为开区域, f x)( 为定义在 D 上的函数, 0 x ),,,( 002 01 n = \ xxx ∈D。若存在 0 x 的邻域 ),( 0 x rO ,使得 )),()(()()( 0 0 ≥ 或 ≤ ffff xxxx x ∈ ),( 0 x rO , 则称 0 x 为 f 的极大值点(或极小值点);相应地,称 )( 0 f x 为相应的极 大值(或极小值);极大值点与极小值点统称为极值点,极大值与极 小值统称为极值
文档格式:PPT 文档大小:1.06MB 文档页数:23
一、 正交函数系与正交多项式 二、 正交多项式的性质 六、小结 三、 Legendre 多项式 四、 Chebyshey 多项式 五、其它常用的正交多项式
文档格式:PDF 文档大小:240.78KB 文档页数:44
前面讨论的函数大多是 = yxfz ),( 形式,如 z = xy 和 22 += yxz 等。 这种函数表达形式通常称为显函数。 但在理论与实际问题中更多遇到的是函数关系无法用显式来表 达的情况。如在一元函数中提过的反映行星运动的 Kepler 方程 yxF ),( = − − ε yxy = < ε < 10,0sin , 这里 x 是时间, y 是行星与太阳的连线扫过的扇形的弧度,ε 是行星 运动的椭圆轨道的离心率
首页上页184185186187188189190191下页末页
热门关键字
搜索一下,找到相关课件或文库资源 2691 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有