点击切换搜索课件文库搜索结果(2691)
文档格式:PDF 文档大小:166.97KB 文档页数:24
链式规则 设 = yxyxfz ),(),,( ∈ Df 是区域Df ⊂ 2 R 上的二元函数,而 : g g D → 2 R , 6 vuyvuxvu )),(),,((),( 是区域Dg ⊂ 2 R 上的二元二维向量值函数。如果 g 的值域 g D( ) g ⊂ Df , 那么可以构造复合函数 = fz D g = vuvuyvuxf ),()],,(),,([ ∈ Dg
文档格式:PDF 文档大小:142.81KB 文档页数:15
紧集上的连续映射 为了将一元连续函数在闭区间上的重要性质推广到多元连续函 数,为此先定义多元函数在点集的边界点连续的概念。 定义 11.3.1 设点集 K ⊂ n R ,f : K→ m R 为映射(向量值函数), x K 0 ∈ 。如果对于任意给定的ε > 0,存在δ > 0,使得当 0 xx K ∈O( ,) δ ∩ 时
文档格式:PDF 文档大小:283.76KB 文档页数:39
Taylor 级数与余项公式 假设函数 xf )( 在 0 x 的某个邻域 O( 0 x , r)可表示成幂级数 xf )( = ∑ ∞ = − 0 0 )( n n n xxa ,x∈O( 0 x , r), 即∑ ∞ = − 0 0 )( n n n xxa 在 O( 0 x , r)上的和函数为 xf )( 。根据幂级数的逐项可导 性, xf )( 必定在 O( 0 x , r)上任意阶可导,且对一切k + ∈N , )( = )( xf k ∑ ∞ = − −+−− kn kn n xxaknnn )()1()1( \ 0
文档格式:PDF 文档大小:715.81KB 文档页数:44
一致收敛的判别 定理10.2.1(函数项级数一致收敛的 Cauchy收敛原理)函数 项级数∑un(x)在D上一致收敛的充分必要条件是:对于任意给定的 >0,存在正整数N=N(),使 un(x)+un2(x)++um(x)|n>N与一切x∈D成立
文档格式:PDF 文档大小:241.11KB 文档页数:29
集合论的基础是由德国数学家 Cantor 在19世纪 70 年代奠定的。 集合:指具有某种特定性质的具体的或抽象的对象汇集成的总体。 这些具体的或抽象的对象称为该集合的元素
文档格式:PPT 文档大小:564KB 文档页数:41
在科学研究、经济建设和生产实践中,人们 经常遇到一类含有多个目标的数学规划问题,我 们称之为多目标规划。本章介绍一种特殊的多目 标规划叫目标规划(goal programming),这是美 国学者Charnes等在1952年提出来的。目标规划 在实践中的应用十分广泛,它的重要特点是对各 个目标分级加权与逐级优化,这符合人们处理问 题要分别轻重缓急保证重点的思考方式
文档格式:PPT 文档大小:730.5KB 文档页数:12
1、线束的参数表示 定义2.3 设p1 , p2 , p3 , p4为线束S(p)中四直线,且p1≠p2,其齐 次坐标依次为a, b, a+λ1b, a+λ2b. 则记(p1p2 , p3p4 )表示这四直线构 成的一个交比. 定义为
文档格式:PPT 文档大小:252KB 文档页数:12
一、定义 定义2.11. 两个成射影对应的重叠的一维基本形中, 若对任意一 个元素, 无论把它看着属于第一基本形的元素或是第二基本形的 元素, 其对应元素相同, 则称这种非恒同的射影变换为一个对合. 定义2.11'. 设f 为一维基本形[π]上的一个非恒同的射影变换. 若 对任意的x∈[π], 都有f(x)=f –1 (x), 则f 称为[π]上的一个对合. 注 (1). 对合非恒同
文档格式:PDF 文档大小:586.93KB 文档页数:63
6.1 排队的基本概念 6.2 到达与服务的规律 6.3 M/M/1排队模型 6.4 M/M/C排队模型 6.5 M/G/1排队模型 6.6 排队系统优化
文档格式:PPT 文档大小:654KB 文档页数:13
一、一维射影变换 1、定义 一个一维基本形到自身的射影对应称为一维射影变换. 即若φ: [π] [π'], 且[π]=[π']. 则φ称为一维基本形[π]上的 一个射影变换. 注:为方便理解, 常把一个 一维基本型看作两个“重叠” 的一维基本形. 据Steiner作图法, 一个一维 射影变换可由3次透视对应得 到
首页上页185186187188189190191192下页末页
热门关键字
搜索一下,找到相关课件或文库资源 2691 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有