第一类曲线积分 设一条具有质量的空间曲线 L 上任一点 (, ,) x y z 处的线密度为 ρ (, ,) x y z 。将 L 分成 n 个小曲线段 Li = \,,2,1( ni ),并在 Li 上任取一点 ),,(ξ η ζ iii ,那么当每个Li的长度Δ si 都很小时,Li的质量就近似地等于 iiii ρ ξ η ζ ),,( Δs ,于是整条L的质量就近似地等于
链式规则 设 = yxyxfz ),(),,( ∈ Df 是区域Df ⊂ 2 R 上的二元函数,而 : g g D → 2 R , 6 vuyvuxvu )),(),,((),( 是区域Dg ⊂ 2 R 上的二元二维向量值函数。如果 g 的值域 g D( ) g ⊂ Df , 那么可以构造复合函数 = fz D g = vuvuyvuxf ),()],,(),,([ ∈ Dg
多元函数 定义 11.2.1 设 D 是 n R 上的点集,D 到 R 的映射 f : D → R , x 6 z 称为 n 元函数,记为 z f = ( ) x 。这时,D 称为 f 的定义域, f ( ) D = { R | ( ), } z zf ∈ = ∈ xx D 称为 f 的值域,Γ= 1 {(,) R | ( ), } n z zf + x x ∈= ∈x D 称为 f 的图像