点击切换搜索课件文库搜索结果(2002)
文档格式:PDF 文档大小:107.72KB 文档页数:8
In lecture D2 we introduced the position velocity and acceleration vectors and referred them to a fixed cartesian coordinate system. While it is clear that the choice of coordinate system does not affect the final answer, we shall see that, in practical problems, the choice of a specific system may simplify the calculations considerably. In previous lectures, all the vectors at all points in the trajectory were expressed in the
文档格式:PDF 文档大小:82.46KB 文档页数:5
We have seen that the work done by a force F on a particle is given by dw =. dr. If the work done by F, when the particle moves from any position TI to any position T2, can be expressed as, W12=fdr=-(V(r2)-V(1)=V-v2, (1) then we say that the force is conservative. In the above expression, the scalar
文档格式:PDF 文档大小:80.64KB 文档页数:5
In this lecture we will consider the equations that result from integrating Newtons second law, F=ma, in time. This will lead to the principle of linear impulse and momentum. This principle is very useful when solving problems in which we are interested in determining the global effect of a force acting on a particle over a time interval Linear momentum We consider the curvilinear motion of a particle of mass, m, under the influence of a force F. Assuming that
文档格式:PDF 文档大小:103.33KB 文档页数:8
In addition to the equations of linear impulse and momentum considered in the previous lecture, there is a parallel set of equations that relate the angular impulse and momentum. Angular Momentum We consider a particle of mass, m, with velocity v, moving under the influence of a force F. The angular momentum about point O is defined as the \moment\ of the particle's linear
文档格式:PDF 文档大小:86.82KB 文档页数:6
In the previous lectures we have described particle motion as it would be seen by an observer standing still at a fixed origin. This type of motion is called absolute motion. In many situations of practical interest, we find ourselves forced to describe the motion of bodies while we are simultaneously moving with respect to a more basic reference. There are many examples were such situations occur. The absolute motion of a passenger inside an aircraft is best
文档格式:PDF 文档大小:158.83KB 文档页数:12
In the previous lecture, we related the motion experienced by two observers in relative translational motion with respect to each other. In this lecture we will extend this relation to our third type of observer.That is, observers who accelerate and rotate with respect to each other. As a matter of illustration, let us consider a very simple situation, in which a particle at rest with respect
文档格式:PDF 文档大小:143.21KB 文档页数:9
Non-Inertial Reference Frame Gravitational attraction The Law of Universal Attraction was already introduced in lecture D1. The law postulates that the force of attraction between any two particles, of masses M and m, respectively, has a magnitude, F, given by F= (1) where r is the distance between the two particles, and G is the universal constant of gravitation. The value of G is empirically determined to be
文档格式:PDF 文档大小:96.83KB 文档页数:6
An accelerometer is a device used to measure linear acceleration without an external reference. The main idea has already been illustrated in the previous lecture with the example of the boy in the elevator. Clearly, if we know the weight of the boy when the acceleration is zero, we can determine from the reading on the scale the value of the acceleration. In summary, the acceleration will produce an inertial force on a test mass, and this force can be nulled and measured with precision. Below we have sketch of a very simple one axis accelerometer
文档格式:PDF 文档大小:107.17KB 文档页数:7
In this lecture, we will start from the general relative motion concepts introduced in lectures D11 and D12. and then apply them to describe the motion of 2D rigid bodies. We will think of a rigid body as a system of particles in which the distance between any two particles stays constant. The term 2-dimensional implies that particles move in parallel planes. This includes, for instance, a planar body moving within its plane
文档格式:PDF 文档大小:120.88KB 文档页数:6
In this lecture, we will revisit the principle of work and energy introduced in lecture D7 for particle dynamics, and extend it to 2D rigid body dynamics. Kinetic Energy for a 2D Rigid Body We start by recalling the kinetic energy expression for a system of particles derived in lecture D17
首页上页191192193194195196197198下页末页
热门关键字
搜索一下,找到相关课件或文库资源 2002 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有