• Data Mining – From data warehousing to data mining. – Data pre-processing and data mining life-cycle. – Association and sequence analysis; classification and clustering. – Fuzzy Logic, Neural Networks, and Genetic Algorithms. – Mining Complex Data. • OLAP mining; spatial data mining; text mining; time-series data mining; web mining; visual data mining. • Data warehousing. – Introduction; basic concepts of data warehousing; data warehouse vs. Operational DB; data warehouse and the industry. – Architecture and design; two-tier and threetier architecture; star schema and snowflake schema; data capturing, replication, transformation and cleansing. – Data characteristics; metadata; static and dynamic data; derived data. – Data Marts; OLAP; data mining; data warehouse administration
◼ Data Warehouse: Basic Concepts ◼ Data Warehouse Modeling: Data Cube and OLAP ◼ Data Warehouse Design and Usage ◼ Data Warehouse Implementation ◼ Data Generalization by Attribute-Oriented Induction ◼ Summary
Motivation: Why data mining? What is data mining? A Multi-Dimensional View of Data Mining What Kinds of Data Can Be Mined? What Kinds of Patterns Can Be Mined? What Kinds of Technologies Are Used? What Kinds of Applications Are Targeted? Major Issues in Data Mining A Brief History of Data Mining and Data Mining Society Summary