点击切换搜索课件文库搜索结果(15)
文档格式:PDF 文档大小:754.89KB 文档页数:8
在输电场景中,吊车等大型机械的运作会威胁到输电线路的安全。针对此问题,从训练数据、网络结构和算法超参数的角度进行研究,设计了一种新的端到端的输电线路威胁检测网络结构TATLNet,其中包括可疑区域生成网络VRGNet和威胁判别网络VTCNet,VRGNet与VTCNet共享部分卷积网络以实现特征共享,并利用模型压缩的方式压缩模型体积,提升检测效率,从计算机视觉和系统工程的角度对入侵输电场景的大型机械进行精确预警。针对训练数据偏少的问题,利用多种数据增强技术相结合的方式对数据集进行扩充。通过充分的试验对本方法的多个超参数进行探究,综合检测准确率和推理速度来研究其最优配置。研究结果表明,随着网格数目的增加,准确率也随之增加,而召回率有先增加后降低的趋势,检测效率则随着网格的增加迅速降低。综合检测准确率与推理速度,确定9×9为最优网格划分方案;随着输入图像尺寸的增加,检测准确率稳步上升而检测效率逐渐下降,综合检测准确率和效率,选择480×480像素作为最终的图像输入尺寸。输入实验以及现场部署表明,相对于其他的轻量级目标检测算法,该方法对输电现场入侵的吊车等大型机械的检测具有更优秀的准确性和效率,满足实际应用的需要
文档格式:PDF 文档大小:759.98KB 文档页数:8
中文电子病历文本包含大量嵌套实体、句子语法结构复杂、句式偏短。为有效识别其医疗实体,提出一种融合多特征嵌入与注意力机制的命名实体识别算法,在输入表示层融合字符、单词、字形三个粒度的特征,并在双向长短期记忆网络的隐含层引入注意力机制,使算法在捕获特征时更加关注于医疗实体相关的字符,最终实现对中文电子病历中疾病、身体部位、症状、药物、操作五类实体的最优标注。面向开源和自建糖尿病数据集的实验结果中所提算法的实体识别准确率、召回率和F1值都达到97%以上,表明其可以更加有效地识别中文电子病历中各类实体
文档格式:PDF 文档大小:4.26MB 文档页数:10
在贝叶斯理论框架下, 提出了一种基于多源数据融合的深埋硬岩隧道围岩参数概率反演方法.首先, 分析硬岩隧道常用的启裂-剥落界限本构模型中围岩单轴抗压强度、启裂强度与抗压强度比及抗拉强度三个参数不确定性来源, 确定其概率统计特征; 其次, 利用粒子群算法优化多输出支持向量机, 建立反映反演参数与隧道监测数据间非线性映射关系的智能响应面; 最后, 结合贝叶斯分析方法构建概率反演模型, 运用马尔科夫链蒙特卡洛模拟算法实现了围岩参数的动态更新.将该方法应用到某深埋硬岩隧道中, 利用反演的围岩参数计算隧道拱顶下沉点、周边收敛点变化值及开挖损伤区深度, 与监测数据吻合较好.结果表明, 该方法可以实现围岩多参数快速概率反演, 更新后的参数可用于硬岩隧道施工安全风险评估与结构可靠性设计
文档格式:PDF 文档大小:1.5MB 文档页数:6
针对人耳识别中存在姿态、光照变化等问题,提出信息融合的方法,将二维人耳和三维人耳的信息进行融合,以克服姿态、光照对人耳识别的影响.对于二维人耳,由于姿态等的变化会导致人耳图像数据在高维空间中呈现出非线性流形结构,采用等距映射这种流形学习算法进行特征提取,对三维深度人耳则采用3D局部二值模式进行特征提取,然后分别进行二维和三维人耳识别,最后在决策层进行融合识别.在79人的人耳数据库上进行了实验,每人8幅带姿态的二维人耳图像和6幅带光照的三维人耳深度图像.实验结果表明,与单独的二维人耳和三维人耳识别相比,融合之后的识别效果和认证效果均有很大的改善
文档格式:PDF 文档大小:3.66MB 文档页数:7
结合沉降和压滤实验, 对脱水性能数据进行曲线拟合获得连续网状结构形成浓度、压缩屈服应力和干涉沉降系数, 引入Usher提出的稳态浓密性能预测算法, 建立了无耙深锥浓密模型, 分析了絮凝剂单耗、底流中固相的体积分数、泥层高度等对固体通量和固体处理能力的影响规律.研究结果表明: 絮凝剂添加量对沉降区域影响大于压密区域, 20 g·t-1时浓密性能较好, 底流中固相的体积分数越大固体通量越小; 在沉降区域, 固体通量仅与浓度有关, 不受泥层高度影响; 在压密区域, 固体通量为浓度与泥层高度的方程; 模型参数范围内, 当泥层高度 < 3.5 m时, 固体处理能力为浓度与泥层高度的方程, 当泥层高度>3.5 m时, 固体处理能力与固体通量随底流中固相的体积分数变化规律一致
上页12
热门关键字
搜索一下,找到相关课件或文库资源 15 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有