点击切换搜索课件文库搜索结果(2220)
文档格式:PDF 文档大小:236.62KB 文档页数:26
Beta函数 形如 B(p,q)=x-(1-x)-dx 的含参变量积分称为Beta函数,或第一类 Euler积分。 先讨论它的定义域。将Beta函数写成 B(, 9)=(d-x)dx+ x-(1-x)-dx, 当x→0时,x-(1-x)-~x-1,所以只有当p>0时右边第一个反常积 分收敛
文档格式:PDF 文档大小:368.87KB 文档页数:41
含参变量反常积分的一致收敛 含参变量的反常积分也有两种:无穷区间上的含参变量反常积 分 和无界函数的含参变量反常积分
文档格式:PDF 文档大小:449.96KB 文档页数:53
Green 公式 设L为平面上的一条曲线,它的方程是 = + tytxt )()()( jir ,α ≤ t ≤ β 。 如果 α = rr β )()( ,而且当 ),(, tt 21 ∈ α β , 21 ≠ tt 时总成立 )()( 1 2 ≠ rr tt ,则称 L为简单闭曲线(或 Jordan 曲线)。这就是说,简单闭曲线除两个端 点相重合外,曲线自身不相交
文档格式:PDF 文档大小:437.69KB 文档页数:49
第一类曲线积分 设一条具有质量的空间曲线 L 上任一点 (, ,) x y z 处的线密度为 ρ (, ,) x y z 。将 L 分成 n 个小曲线段 Li = \,,2,1( ni ),并在 Li 上任取一点 ),,(ξ η ζ iii ,那么当每个Li的长度Δ si 都很小时,Li的质量就近似地等于 iiii ρ ξ η ζ ),,( Δs ,于是整条L的质量就近似地等于
文档格式:PDF 文档大小:321.1KB 文档页数:29
无界区域上的反常重积分 设 D为平面 2 R 上的无界区域,它的边界是由有限条光滑曲线组 成的。假设 D上的函数 f xy (,) 具有下述性质:它在 D中有界的、可 求 面积的子区域上可积
文档格式:PDF 文档大小:302.45KB 文档页数:31
重积分的性质 性质 1(线性性)设 f 和 g 都在区域 Ω 上可积,α, β 为常数,则 α + βgf 在 Ω 上也可积,并且 ( )d α β f + g V ∫ Ω
文档格式:PDF 文档大小:252.21KB 文档页数:35
Lagrange 乘数法 在考虑函数的极值或最值问题时,经常需要对函数的自变量附加 一定的条件。例如,求原点到直线 ⎩⎨⎧ =++ =++ 632 ,1zyx zyx 的距离,就是在限制条件 + + zyx = 1和 + + zyx = 632 的情况下,计算函 数 222 ),,( ++= zyxzyxf 的最小值
文档格式:PDF 文档大小:223.11KB 文档页数:31
空间曲线的切线和法平面 一条空间曲线可以看成一个质点在空间运动的轨迹。取定一个直 角坐标系,设质点在时刻 t位于点 tztytxP ))(),(),(( 处,即它在任一时刻 的坐标可用
文档格式:PDF 文档大小:143.03KB 文档页数:13
中值定理 定义 12.3.1 设 n D ⊂ R 是区域。若连结 D中任意两点的线段都完 全属于D,即对于任意两点 x0, 1 x ∈ D和一切λ ∈ ]1,0[ ,恒有 )( 0 + λ − xxx 01 ∈ D, 则称D为凸区域
文档格式:PDF 文档大小:266.22KB 文档页数:33
多元函数 定义 11.2.1 设 D 是 n R 上的点集,D 到 R 的映射 f : D → R , x 6 z 称为 n 元函数,记为 z f = ( ) x 。这时,D 称为 f 的定义域, f ( ) D = { R | ( ), } z zf ∈ = ∈ xx D 称为 f 的值域,Γ= 1 {(,) R | ( ), } n z zf + x x ∈= ∈x D 称为 f 的图像
首页上页208209210211212213214215下页末页
热门关键字
搜索一下,找到相关课件或文库资源 2220 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有