NUMERICAL SoL°To ·G川EN舟c。 MPLEX SET of0 YNAMICS 义(t)=斤(x,x) WHERE f()CouL0BE升MNLE升 R FUNCTI0N 工TCNB.工 MOss8 LE To ACTVALLY SoLVE FoR×(t)∈ ACTLY →0 EVELoP A则 UMERICAL SOLUTION. cA小NE0co0 ES TO HELP v5 D。TwsτN MATLAB BUT LET US CONSIDER THE BAsIcs
ECTURE +2 RIGId BoDY DYNAnIC 工Ap1CAT105FA。R工 GENERAL ROTATIONAL JYNMICS EULER'S EQuATIoN of MOTIoN TORQVE fREE SPECIAL CAsEs PRIMARY LESSONS 3D RoTATONAL MOTION MUCH MORE COMPLEX
16.61 Aerospace Dynamics Spring 2003 Generalized forces revisited Derived Lagrange s equation from d'Alembert's equation ∑m(8x+16y+22)=∑(Fx+F+F。=) Define virtual displacements sx Substitute in and noting the independence of the 8q,, for each