点击切换搜索课件文库搜索结果(990)
文档格式:PDF 文档大小:807.46KB 文档页数:6
针对特厚板再结晶型轧制,板坯中心难以变形导致心部晶粒粗大的问题,使用Q345B钢,采用有限元方法建立了特厚板轧制的仿真模型,以研究在特厚板轧制过程中引入厚度方向上的温度梯度对钢板心部应变的影响,并与传统均温轧制进行对比,预测了两种温度场条件下奥氏体再结晶的晶粒尺寸.采用大试样平面应变实验对模拟结果进行验证.研究结果表明,温度梯度轧制有利于增加坯料心部应变量,最大增加了61.35%.计算和实验结果显示温度梯度轧制可以减小特厚板心部晶粒尺寸,晶粒度级别提高了一个等级,说明该工艺对提高特厚板中心区域性能有利
文档格式:PPT 文档大小:2.21MB 文档页数:47
4.1 组合体的形成 4.2 组合体视图的画法 4.4 组合体视图的阅读 4.3 组合体的尺寸标注
文档格式:PPT 文档大小:1.37MB 文档页数:88
•金属的液态成型是指熔炼金属,制造铸型,并将熔融金属浇入铸型,凝固后获得一定形状和性能铸件的成型方法。金属的液体成型也称为铸造。•金属液态成型具有下列优点:•(1)能制造各种尺寸和形状复杂的铸件,尤其是内腔复杂的铸件。•(2)铸件的形状和尺寸与零件很接近,因而节省了金属材料和加工工时。•(3)绝大多数金属均能用液态成型方法制成铸件。•(4)液态成型生产适用于各种生产类型。•(5)液态成型所用的原材料来源广泛,价格低廉,并可回收使用,还可利用金属废料和废机件。 6.1 合金的液态成型工艺理论基础 • 6.1.1 合金的充型能力 • 6.1.2合金的收缩性能 • 6.1.3 合金的偏析和吸气性 6.2 常用液态成型合金及其熔铸 • 6.2.1常用铸铁件及其熔铸工艺 • 6.2.2.铸钢件 • 6.2.3 有色合金铸件生产 6.3砂型铸造方法 6.4 合金液态成型件的结构工艺设计 6.5 特种铸造及铸造新工艺技术简介
文档格式:PPT 文档大小:575.5KB 文档页数:26
1. 凸轮机构的应用和分类 2. 推杆的运动规律 3. 凸轮轮廓曲线的设计 4. 凸轮机构基本尺寸的确定
文档格式:PPT 文档大小:142KB 文档页数:6
一、加工精度与加工误差 加工精度:是指零件加工后的实际几何 参数(尺寸、形状和相互位置)与理想几何 参数的接近程度;实际值愈接近理想值,加 工精度就愈高。零件的加工精度包含尺寸精 度形状精度和位置精度等三方面的内容
文档格式:PPT 文档大小:1.25MB 文档页数:66
• 基本概念 • 工件加工时的定位和基准 • 工艺路线的拟定 • 加工余量、工序间尺寸及公差的确定 • 工艺尺寸链 • 时间定额和提高生产率的工艺途径
文档格式:PDF 文档大小:720.81KB 文档页数:10
本文给出了一种子图配准的随机搜索算法。搜索过程是纵随机选择的起点开始的。该点由在(0,1)区间上均匀分布的假随机数所产生。这一搜索过程是朝向匹配点逐步地进行的。本算法的优点已经由试验所证实。试验是在窗口尺寸与图片尺寸的比值ξ=0.21的情况下进行的
文档格式:PPT 文档大小:206.5KB 文档页数:87
纳米”是英文nanometer的译名, 是一种度量单位,1纳米为百万分之一 毫米,即1毫微米,也就是十亿分之一 米,约相当于45个原子串起来那么长。 纳米结构通常是指尺寸在100纳米以下 的微小结构。 纳米研究的范围是1到100纳米, 0.1纳米是单个氢原子的尺寸,因此 所谓0.1纳米层面的“纳米技术”是 不存在的
文档格式:PDF 文档大小:8.55MB 文档页数:8
采用非线性有限元方法研究除尘器壳体承受板顶竖向均布荷载作用的墙板发挥受力蒙皮作用时的破坏形式和承载能力,分析墙板厚度、墙板宽度、加劲肋间距、立柱横向支撑间距、立柱截面尺寸等因素对墙板承载能力的影响.结果表明:立柱受载水平较低时,墙板发生受剪屈服破坏;立柱受载水平中等时,墙板同时发生受压和受剪屈服破坏;立柱受载水平较高时,墙板发生受压屈服破坏.在同等立柱受载水平情况时,墙板承载能力随着墙板厚度增加、墙板宽度减小、加劲肋间距减小或者立柱支撑间距减小而增大.立柱截面尺寸增大使得立柱刚度增大时,立柱稳定性提高,墙板承载力增大
文档格式:PPT 文档大小:72KB 文档页数:6
1-1图纸幅面、线型、字体、尺寸标注 一、幅面(P21) 1.图纸的幅面:指图纸本身的大小规格,A0-A4 2.图框:图纸上所供绘图的范围的边线。(幅面及图框尺寸P21表2-1)。 3.标题栏:位置、规格(P22图2-1、2-2)。 4.绘签栏:位置、规格(P22图2-3)
首页上页2122232425262728下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有