点击切换搜索课件文库搜索结果(7589)
文档格式:PDF 文档大小:18.86MB 文档页数:55
采样数据输出形式 采样数据接收方法 为什么要大容量存储? 怎么实现大容量存储? 如何利用大容量数据?
文档格式:DOC 文档大小:290.5KB 文档页数:16
第1章绪论 要求 1、基本概念:数据结构、数据元素等 2、算法及其时间复杂度; 3、数据结构的抽象数据类型表示
文档格式:PDF 文档大小:2.22MB 文档页数:7
针对目前对薄壁钣金件孔测量的效率低,孔心位置和孔半径测量方法上存在的不足,提出一种基于T-scan测量的薄壁钣金件孔特征的重构方法.该方法用T-scan对薄壁钣金件上孔进行扫描得到点云数据;根据点云数据中连续点的欧拉距离将点云数据划分成扫描线点数据;对扫描线点云数据进行算法处理获取位于平面上的点及孔的边缘点;最后对平面上的点采用稳健特征值平面拟合得出平面参数,利用最小二乘空间圆拟合获取孔心坐标值及孔径大小,完成薄壁孔特征重构.通过对试验件和薄壁钣金件上孔进行测量处理,实验表明该算法有很好的实用性且精度满足钣金件孔的实际检测精度要求
文档格式:PDF 文档大小:429.34KB 文档页数:6
工业监控系统所采集到的多元时间序列在利用数据挖掘技术获取内部存在的未知模式的过程中,经常会出现原始数据庞杂、分段结果重复、交集过多和界限不清晰等问题,导致含有突变变量或数据间相关性差的数据集进行模式挖掘结果不理想.针对上述问题,本文提出了一种新的多元时序模糊聚类分段挖掘算法.实验结果表明,该算法克服了Gath-Geva算法聚类精度易受初始值影响的不足,能够较好地反映出原始数据中潜在的过程变化,从而有效地处理时间序列的分段问题并得到理想的挖掘结果
文档格式:PDF 文档大小:1.86MB 文档页数:7
针对复杂采空区激光探测中存在探测“盲区”和点云数据分布不均的问题,研究激光多点扫描和点云数据拼接与精简方法.通过多点探测避免了单次探测“盲区”,加密了数据稀疏区.提出了基于公共坐标和最小二乘法的靶标矩阵转换方法,实现了多点探测点云的拼接.统计了点云密集区的分布规律;对密集散乱点云,提出了沿y轴方向分层剖分,层内数据以x和z坐标极值分区,区内每点以x值排序后依步长筛选的精简算法.大型贯通采空区验证表明:基于最小二乘法的拼接算法最优,误差范围在0.1 mm左右;数据精简率为15%-25%,确保了边界三维信息的完整性
文档格式:PDF 文档大小:788.36KB 文档页数:11
集束微电极系统用于腐蚀电化学系统测量是一种新的方案。它能在极短的时间内采集到大量的腐蚀体系的电化学数据,从而可以分析腐蚀体系的暂态电化学行为。由于数据量大,采集的数据可达8.8万个/s,因此要求有好的数据处理方法。本软件就是专为此系统而设计的。数据处理分为单一电极与集束电极两种。前者主要考虑单一电极上得到的电化学响应,后者则考虑腐蚀样品表面上总的情况
文档格式:PDF 文档大小:7.72MB 文档页数:7
为准确掌握超宽冷轧机不同宽度带钢的板形特征,以某2180 mm超宽冷轧机1900 mm宽度带钢实测板形数据为研究对象,借鉴‘大数据’的思想,结合数据挖掘领域中聚类分析方法,提出基于网格和密度的板形特征聚类方法,并以此方法对几种典型带钢宽度的大量板形实测数据进行分析,得到不同宽度带钢的板形特征.以分段函数对板形特征进行多项式表达,得到不同宽度带钢的板形特征参数化分析结果.提出的基于网格和密度的板形特征聚类与分析方法,能够快速准确地对大量板形实测数据进行分析,提取出长期生产过程中板形缺陷特征并得到参数化表达,从而为冷连轧机,特别是超宽带钢冷连轧机的辊形改进和控制策略优化提供数据基础
文档格式:PDF 文档大小:358.08KB 文档页数:8
CABOSFV_C是一种针对分类属性高维数据的高效聚类算法,该算法采用集合稀疏差异度进行距离计算,并采用稀疏特征向量实现数据压缩.该算法的聚类效果受集合稀疏差异度上限参数的影响,而该参数的选取没有明确的指导.针对该问题提出基于集合稀疏差异度的启发式分类属性数据层次聚类算法(heuristic hierarchical clustering algorithm of categorical data based on sparse feature dissimilarity,HABOS),该方法从聚结型层次聚类思想的角度出发,在聚类数上限参数的约束下,应用新的内部聚类有效性评价指标(clustering validation index based on sparse feature dissimilarity,CVISFD)进行启发式度量,从而实现对聚类层次的自动选取.UCI基准数据集的实验结果表明,HABOS有效地提高了聚类准确性和稳定性
文档格式:PDF 文档大小:740.75KB 文档页数:12
在流控传输协议(stream control transmission protocol,SCTP)中,多路径并行传输利用多家乡特性实现数据在关联的多条端到端路径中的并行传输.然而,受不同路径性能差异的影响,多路径并行传输将带来接收端的数据乱序.为了减轻数据乱序的程度并提高网络吞吐量性能,需要尽可能准确地估计每条路径的实时带宽与往返时间(round trip time,RTT).本文利用扩展矢量卡尔曼滤波对多路径并行传输中每条路径的可用带宽与往返时间进行联合预测,同时提出了一种综合考虑发送端未经接收端确认的数据的路径选择算法.仿真结果表明,通过实时准确地预测可用带宽和往返时间,路径选择算法能够减轻接收端数据乱序的程度.对于带宽敏感的多路径应用场景而言,该算法的收敛速度比Kalman-CMT算法更快,对网络吞吐量性能也有一定程度地提高;对时延和带宽都敏感的多路径应用场景来说,算法在收敛速度与吞吐量两方面优势明显
文档格式:PPT 文档大小:29.23MB 文档页数:182
• 大数据基础 • 大数据核心技术 • 大数据应用
首页上页252253254255256257258259下页末页
热门关键字
搜索一下,找到相关课件或文库资源 7589 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有