网站首页
校园空间
教师库
在线阅读
知识问答
大学课件
高等教育资讯网
大学课件分类
:
基础课件
工程课件
经管课件
农业课件
医药课件
人文课件
其他课件
课件(包)
文库资源
点击切换搜索课件
文库搜索结果(3484)
吉林大学:《线性代数》课程教学资源(讲稿)第一章 多项式(1.3)最大公约式
文档格式:PDF 文档大小:94.55KB 文档页数:6
1.3最大公约式 定义31设f(x),g(x)是2x中不全为零的多项式如果d(x) 是f(x)和g(x)公因式,而且f(x)与g(x)的任何公因式均能整 除d(x)则称d(x)是f(x)与g(x)的一个最大公因式 王定31数城Q上的任意两个不全为零的多项式8(0 均有最大公因子,且对于它们的任意最大公因式d(x)均有 0(x),v(x)∈[x使得 d(x)=o(xf(x)+y(x)g(x)
吉林大学:《线性代数》课程教学资源(讲稿)第一章 多项式(1.1)多项式及整除性
文档格式:PDF 文档大小:98.28KB 文档页数:5
1.1多项式及整除性 定义1.1设Ω是一些数组成的集合,而且不只含一 个数,如果对于任意,它们的和、差、积、商(除数不为0)均含于Ω,则称Ω是一个数域 。 命题1.1每个数域都包含有理数域,即有理数域是最小的数域. QRC是三个最重要的数域,但数域并非仅此三种,如下面例子所示
华北工业大学:《线性代数》课程教学资源(讲义)矩阵的运算
文档格式:DOC 文档大小:305KB 文档页数:8
第二讲矩阵的运算 复习:一、加法。 二、数乘。 三、矩阵与矩阵相乘。 四、转置矩阵 新授: 五、方阵的行列式 定义由n阶方阵A的元素所构成的n阶行列式(各元素 的位置不变),称为方阵A的行列式。记作A或detA (determinant). 注意:方阵与其行列式不同,前者为数表,后者为数值。 运算律: (1)A|=A(行列式性质1) (2) kA=k\A() (3)|AB|=|B(证明较繁)
华北工业大学:《线性代数》课程教学资源(讲义)第二章 矩阵 §5 矩阵的秩 §6 矩阵的初等变换
文档格式:DOC 文档大小:346KB 文档页数:9
§5. 矩阵的秩 §6.矩阵的初等变换
华北工业大学:《线性代数》课程教学资源(讲义)第三章 线性方程组 §3 齐次线性方程组的基础解系 §4 非齐次线性方程组解的结构
文档格式:DOC 文档大小:347.5KB 文档页数:8
§3 齐次线性方程组的基础解系 §4 非齐次线性方程组解的结构
华北工业大学:《线性代数》课程教学资源(讲义)第三章 线性方程组 §1 消元法
文档格式:DOC 文档大小:192.5KB 文档页数:6
第三章线性方程组 在第一、二章中,我们曾经以行列式和逆阵为工具解决了一类线性方程组 的求解问题。本章将系统地解决一般线性方程组的求解问题。所用的工具是克 莱姆法则、初等变换、向量等
华北工业大学:《线性代数》课程教学资源(讲义)实践应用
文档格式:DOC 文档大小:262.5KB 文档页数:10
实践应用 问题一 三人合作效益分配问题 问题的提出: 一般来说,从事某一活动(比如经济活动、社会活动)的各个方面若能同李合作,往 往能够 获得比个人单独活动更大的效益或更小的开支。确定合理地分配这些效益(或分担这些费 用)的 方案是促成合作的前提,我们先研究一个简单的例子
西北工业大学:《线性代数》课程教学资源(讲稿)第六章 二次型
文档格式:DOC 文档大小:481KB 文档页数:12
第六章二次型 变量x1,x2,…,xn的二次齐次多项式 f(x1,x2,,xn)=a1x2+2a12x1x2+2a13x1x3+…+2anx1xn +a22x2+2a23x2x3+…+2a2nx2xn +amx 称为n元二次型,简称为二次型 a∈R:称f(x1,x2,…,xn)为实二次型(本章只讨论实二次型) a∈C:称f(x1,x2,…,xn)为复二次型 6.1二次型的矩阵表示 1.矩阵表示:令an=a(>i),则有
西北工业大学:《线性代数》课程教学资源(讲稿)第五章 矩阵的相似变换(5.1-5.2)
文档格式:DOC 文档大小:408KB 文档页数:9
第五章矩阵的相似变换 5.1矩阵的特征值与特征向量 定义:对于n阶方阵A,若有数λ和向量x≠0满足Ax=x,称λ为A 的 特征值,称x为A的属于特征值λ的特征向量 特征方程:Ax=λx(A-E)x=0或者(ae-A)x=0 (A-E)x=0有非零解det(-E)=0 det(E-A)=0 特征矩阵:A-λE或者λE-A
西北工业大学:《线性代数》课程教学资源(讲稿)第四章 向量组的线性相关性(4-4)向量空间
文档格式:DOC 文档大小:377.5KB 文档页数:7
4.4向量空间 1.向量空间:设V是具有某些共同性质的n维向量的集合,若 对任意的a,B∈V,有a+B∈V;(加法封闭) 对任意的a∈V,k∈R,有ka∈V.(数乘封闭) 称集合为向量空间 例如:R={x|x=(51,52,,5n),5∈R}是向量空间 Vo={x|x=(0,52,,5n),5∈R}是向量空间 V1={x|x=(1,52,,5n),5∈R}不是向量空间 ∵0(1,52,,5n)=(0,0,,0)V1,即数乘运算不封闭
首页
上页
254
255
256
257
258
259
260
261
下页
末页
热门关键字
教育统计学
河海大学大学
采矿
信息技术
西华师范大学
生理
欧拉常数
华东政法大学
地质作用
自催化反应
运动生理学
医学史
伊犁师范学院
药物代谢
选择结构设计
西南石油大学
烷烃
水体污染
戚安邦
立体设计
控制测量
静态网站设计
经济系
集成触发器
宏
国际业务
等压
冲压模具
冲裁过程
草原
表达式
of
DSP技术与应用
晶体对称性
记单词
河北工业大学
冲压设备
尺寸标注
查询处理
插补原理
搜索一下,找到相关课件或文库资源
3484
个
©2008-现在 cucdc.com
高等教育资讯网 版权所有