网站首页
校园空间
教师库
在线阅读
知识问答
大学课件
高等教育资讯网
大学课件分类
:
基础课件
工程课件
经管课件
农业课件
医药课件
人文课件
其他课件
课件(包)
文库资源
点击切换搜索课件
文库搜索结果(3553)
北京大学:《高等代数》课程教学资源(讲义)第五章 5.1 双线性函数 5.1.1 线性空间上的线性函数的定义 5.1.2 双线性函数
文档格式:DOC 文档大小:254.5KB 文档页数:3
第五章5-1双线性函数 5.1.1线性空间上的线性函数的定义 1、线性函数的定义 定义设V为数域K上的线性空间,fV→K为映射,满足 f(a+B)=f(a)+f(),va,B∈V;f(ka)kf(a),∈k,aev,则称f为由V 到K的一个线性函数(即f为V到K的一个线性映射) 如同一般的线性映射,有以下事实: i)、f:V→K是线性函数当且仅当f(ka+1B)=kf(a)+lf(B) i)、f(0)=0; i)、f(-a)=-f(a) 命题数域K上的n维线性空间V上的线性函数的全体关于函数加法和数乘构成K上 的n维线性空间
北京大学:《高等代数》课程教学资源(讲义)第四章 线性空间与线性变换 4.4 线性变换的特征值与特征向量 4.4.2 关于特征向量与特征子空间的一些性质 4.4.3 线性变换的不变子空间
文档格式:DOC 文档大小:197.5KB 文档页数:2
第四章4-4特征值与特征向量(续) 4.4.2关于特征向量与特征子空间的一些性质 命题线性变换的属于不同特征值的特征向量线性无关。 证明设A为VK上的线性变换,,2,是两两不同的特征值,(1≤i≤t)是 属于特征子空间V的特征向量,设k,k2,k,∈K,使得k5+k252+…+k5=0,两 边用A作用(i=1,2,…,-1),于是得到方程组 5+52++=0,j0,1,t-1 其中入的方幂组成的矩阵为
北京大学:《高等代数》课程教学资源(讲义)第四章 线性空间与线性变换 4.3 线性映射与线性变换 4.3.4 线性变换的定义与运算
文档格式:DOC 文档大小:143.5KB 文档页数:2
第四章4-3线性映射与线性变换(续) 4.3.4线性变换的定义与运算 定义线性空间到自身的线性映射称为线性变换,记Hom(V,V)为Endr(V)或End (V)。 例恒同变换 E:V→V, >a. 例投影(射影)设V=V1V2,Va∈V,a=a+a2(a1eV,a2∈V2),定义V到 V的投影P(a)=a1,V到V2的投影P2(a)=a2 定义End(V)中的运算(加法、数乘和乘法) 加法定义为(A+)(a)=A(a)+B(a)(Va∈V) 数乘定义为(kA)(a)=k(A(a)),其中k∈K; 乘法(复合)定义为(AB)(a)=A(B(a)
北京大学:《高等代数》课程教学资源(讲义)第四章 线性空间与线性变换 4.3 线性映射与线性变换 4.3.2 线性映射的运算的定义与性质 4.3.3 线性映射在一组基下的矩阵的定义
文档格式:DOC 文档大小:226KB 文档页数:3
4.3.2线性映射的运算的定义与性质 定义线性映射的运算(加法与数域K上的数量乘法) 设f:U→V,g:U→V为线性映射,定义f+g为 f+g:U→V, af(a)+g(a)(a∈U) 定义kf(Vk∈K)为 kf:u→v akf(a)(a∈U) 说明f+g与kf仍为线性映射。 命题Hom(U,V)在加法和数乘下构成数域K上的线性空间。 证明逐项验证
北京大学:《高等代数》课程教学资源(讲义)第四章 线性空间与线性变换 4.2子空间与商空间 4.2.7 线性空间关于一个子空间的同余关系 4.2.8 商空间的定义,定义的合理性以及商空间的基的选取
文档格式:DOC 文档大小:162KB 文档页数:2
4.2.7线性空间关于一个子空间的同余关系 定义给定K上的线性空间V,M是V的子空间,设a是V的一个向量。如果V的 一个向量a'满足:a-a∈M,则称a'与a模M同余,记作a'=a(modM) 易见,同余关系是V上的一个等价关系。 把全部等价类组成的集合(一个等价类视为等价类集合中的一个元素)记为V/M, V/M中的元素形如 a+m={a+luM}, 我们称a+M为一个模M的同余类,而将等价类中的任一元素称为等价类的代表元素。 命题同余类满足如下一些性质:
北京大学:《高等代数》课程教学资源(讲义)第四章 线性空间与线性变换 4.2子空间与商空间 4.2.2子空间的交与和,生成元集 4.2.3 维数公式
文档格式:DOC 文档大小:204KB 文档页数:3
4.2.2子空间的交与和,生成元集 定义4.13设a1,a2,,a,∈V,则{ka1+k2a2++ka,k∈K,i=12}是V的 一个子空间,称为由a1,a2,,a,生成的子空间,记为(aa2,,a)易见,生成的子 空间的维数等于a1,a2,…,a的秩。 定义4.14子空间的交与和 设V1,V2为线性空间VK的子空间,定义 vnv2={ VEV2},称为子空间的交 V1+V2={v+v2v∈V1,v2∈V2},称为子空间的和。 命题4.9VNV2和V1+V2都是V的子空间
北京大学:《高等代数》课程教学资源(讲义)第四章 线性空间与线性变换 4.1 线性空间的基本概念 4.1.3 线性空间的基与维数,向量的坐标
文档格式:DOC 文档大小:48KB 文档页数:1
4.1.3线性空间的基与维数,向量的坐标 设V是数域K上的线性空间, 定义4.9基和维数 如果在V中存在n个向量a1,a2,…,an,满足 1)、a1,a2,…,an线性无关; 2)、V中任一向量在K上可表成a1,a2,…,an的线性组合, 则称a1,a2,,an为V的一组基。 基即是V的一个极大线性无关部分组
北京大学:《高等代数》课程教学资源(讲义)第三章 行列式(3.4)行列式的完全展开式
文档格式:DOC 文档大小:96.5KB 文档页数:2
第三章3-4行列式的完全展开式 3.4.1一些基本概念 定义给定n个互不相同的自然书,把它们按一定次序排列起来: ii2…in, 称为该n个自然数的一个排列。在上述排列中,如果有一个较大的自然竖排在一个较小的 自然数前面,则称为一个反序。一个排列中包含的反序的总数称为该排列的反序数。排列 …的反序数计作N(2n)。一个排列的反序数为奇数时,该排列称为奇排列
北京大学:《高等代数》课程教学资源(讲义)第三章 行列式(3.1-3.2)2n阶方阵的行列式(1/2)
文档格式:DOC 文档大小:287.5KB 文档页数:4
第三章3-1,3-2n阶方阵的行列式 3.1.1平行四边形的有向面积和平行六面体的有向体积具有的三条性质 在解析几何中已证明,给定二维向量空间中的单位正交标架,设向量a,B的坐标分别 为(a1,a2)和(b,b2),则由向量a,B张成的平行四边形的有向面积为ab2-a2b,这里记 为;给定三维空间内右手单位正交标架,设向量a,B,y的坐标分别为(a1,a2,a3) (b1,b2,b3)和(1,C2,C3),则由向量a,B,y张成的平行六面体的有向体积为 (ab2-a2b1)c1+(a3b1-ab3)c2+(ab2-a2b1)C3
北京大学:《高等代数》课程教学资源(讲义)第二章 向量空间与矩阵(2.6)分块矩阵
文档格式:DOC 文档大小:199.5KB 文档页数:5
2.6.1分块矩阵的乘法,准对角阵的乘积和秩 1、矩阵的分块和分块矩阵的乘法 设A是属于K上的m×n矩阵,B是K上n×k矩阵,将A的行分割r段,每段分别包 含m,m2,,m,个行,又将A的列分割为s段,每段包含nn2,n个列。于是A可用 小块矩阵表示如下: A1A12… A=4424
首页
上页
264
265
266
267
268
269
270
271
下页
末页
热门关键字
热分析
3D
信用
西北农林科技大学
物理数学方程
网络信号
数值计算
数模
数词
人民大学
秦皇岛职业技术学院
量化
理论力学和材料力学
机床与数控机床
化工数学
湖南农业大学
广域
功能原理
东北财经大学
电路与电子学
电路A
地理教学
弹性变形
大脑
创业管理
传统艺术与现代设计
传感技术原理
传感技术与应用
测试设计
财务分析
编码
编程控制器
北京邮电大学
vb程序设计
半导体三极
《物流运输管理》
C程序与设计
VB.NET数据库
《生产运作管理》
《论语》赏析、心理学
搜索一下,找到相关课件或文库资源
3553
个
©2008-现在 cucdc.com
高等教育资讯网 版权所有