点击切换搜索课件文库搜索结果(2847)
文档格式:PPTX 文档大小:2.39MB 文档页数:97
◼ Cluster Analysis: Basic Concepts ◼ Partitioning Methods ◼ Hierarchical Methods ◼ Density-Based Methods ◼ Grid-Based Methods ◼ Evaluation of Clustering ◼ Summary
文档格式:PPT 文档大小:1.41MB 文档页数:76
◼ Classification: Basic Concepts ◼ Decision Tree Induction ◼ Bayes Classification Methods ◼ Rule-Based Classification ◼ Model Evaluation and Selection ◼ Summary
文档格式:PPT 文档大小:2.25MB 文档页数:64
◼ Pattern Mining: A Road Map ◼ Pattern Mining in Multi-Level, Multi-Dimensional Space ◼ Constraint-Based Frequent Pattern Mining ◼ Mining High-Dimensional Data and Colossal Patterns ◼ Mining Compressed or Approximate Patterns ◼ Pattern Exploration and Application ◼ Summary
文档格式:PPT 文档大小:2.07MB 文档页数:78
◼ Basic Concepts ◼ Frequent Itemset Mining Methods ◼ Which Patterns Are Interesting?—Pattern Evaluation Methods ◼ Summary
文档格式:PPT 文档大小:1.15MB 文档页数:57
◼ Data Warehouse: Basic Concepts ◼ Data Warehouse Modeling: Data Cube and OLAP ◼ Data Warehouse Design and Usage ◼ Data Warehouse Implementation ◼ Data Generalization by Attribute-Oriented Induction ◼ Summary
文档格式:PPT 文档大小:594KB 文档页数:55
◼ Data Preprocessing: An Overview ◼ Data Quality ◼ Major Tasks in Data Preprocessing ◼ Data Cleaning ◼ Data Integration ◼ Data Reduction ◼ Data Transformation and Data Discretization ◼ Summary
文档格式:PPT 文档大小:1.06MB 文档页数:42
◼ Data Objects and Attribute Types ◼ Basic Statistical Descriptions of Data ◼ Data Visualization ◼ Measuring Data Similarity and Dissimilarity ◼ Summary
文档格式:PPT 文档大小:423.5KB 文档页数:70
Motivation: Why data mining? What is data mining? A Multi-Dimensional View of Data Mining What Kinds of Data Can Be Mined? What Kinds of Patterns Can Be Mined? What Kinds of Technologies Are Used? What Kinds of Applications Are Targeted? Major Issues in Data Mining A Brief History of Data Mining and Data Mining Society Summary
文档格式:PDF 文档大小:2.82MB 文档页数:113
3.1 分析化学中的误差 3.2 有效数字及其运算规则 3.3 分析化学中的数据处理 3.4 显著性检验 3.5 可疑值取舍 3.6 回归分析法 3.7 提高分析结果准确度的方法
文档格式:PDF 文档大小:218.15KB 文档页数:8
教学目的: 1. 掌握系统误差与随机误差的区别和减免;准确度与精密度的区别、联系与表示方法。 2. 熟练掌握有效数字的位数确定及运算规则,会用置信区间和置信概率处理分析数据。 3. 了解随机误差的分布规律,了解t检验和 F 检验在具体分析中的应用。 教学重点: 1. 有效数字及其运算,标准偏差和平均值置信区间的计算 2. t、F 检验法的方法与作用,可疑值的取舍, 3. 提高分析结果准确度的方法。 教学难点: 1. 正态分布的概率范围; 2. 平均值的置信区间(如从σ求µ的置信区间,从 S 求 X 的置信区间,t 分布)
首页上页269270271272273274275276下页末页
热门关键字
搜索一下,找到相关课件或文库资源 2847 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有