针对漏钢时结晶器铜板温度呈现出的“时间滞后”和“空间倒置”等典型特征,本文通过引入动态时间弯曲(DTW)和机器学习中的密度聚类(DBSCAN)方法,提取、汇集并区分结晶器温度的典型变化模式,在此基础上开发出一种新型的漏钢预报方法。借助动态时间弯曲度量不同拉速、钢种或工艺操作条件下结晶器热电偶温度的相似性,并运用密度聚类方法聚集和分离正常工况、黏结漏钢状况下的温度样本,在此基础上检测和预报结晶器漏钢。结果证实,相较于传统的逻辑判断和人工神经元网络预报结晶器漏钢的方法,基于聚类的漏钢预报方法无需人为设置阈值或参数,能够依据漏钢历史样本中温度变化的共性规律,提取并融合热电偶温度在时间、空间上典型的变化特征,准确区分和预报结晶器漏钢,具有较好的自适应性和鲁棒性