16.21 Techniques of Structural Analysis and sig Spring 2003 Unit #1 In this course we are going to focus on energy and variational methods for structural analysis. To understand the overall approach we start by con- trasting it with the alternative vector mechanics approach
We are going to consider the forces exerted on a material. These can be external or internal. External forces come in two flavors: body forces(given per unit mass or volume) and surface forces(given per unit area). If we cut a body of material in equilibrium under a set of external forces along a plane as shown in fig. 1. and consider one side of it we draw two conclusions: 1 the equilibrium provided by the loads from the side taken out is provided by a set of forces that are distributed among the material particles adjacent to
For the potato-shaped body given in class to explain the concept of stress, the field of stress vectors t(n)=t(n)(x)on the plane of normal n given by its cartesian components(1,0, 0) known and its cartesian components are given by the expression
A Cauchy stress component at a given(fixed) point P of a structure in equilibrium under the action of external loads is defined when 1. the direction of the face on which the stress component acts is specified 2 the direction of the force from which the stress component is derived is specified None of the above statements
which generalizes to the statement. This reduces the number of material constants from 81 to 54. In a similar fashion we can make use of the symmetry of the strain tensor This further reduces the number of material constants to 36. To further reduce the number of material constants consider the conclusion from the first law for elastic materials, equation
How can the paradox with the spring be plained? In other words, which of the following statements is true 1. Equilibrium can be derived from the equiv alence of the external and the internal work 2. Equilibrium is an artifact of our imagina- tion
What do you think the eigenvectors of the element stiff- ness matrix represent? 1. a basis in which the stiffness matrix would be diago- nal (if rotated to that basis) 2. a set of nodal displacements for the element corre-