点击切换搜索课件文库搜索结果(990)
文档格式:PDF 文档大小:486.21KB 文档页数:90
7.1 反馈的基本概念与分类 7.2 负反馈放大电路增益的一般表达式 7.3 负反馈对放大电路性能的改善 7.4 深度负反馈条件下的近似计算 7.7 负反馈放大电路的稳定问题 7.5 负反馈放大电路的设计 7.6 负反馈放大电路的频率响应
文档格式:PPT 文档大小:1.12MB 文档页数:16
第十七讲负反馈放大电路的方框图及放大倍数的估算 一、负反馈放大电路的方框图 二、负反馈放大电路放大倍数的一般表达式 三、深度负反馈的实质 四、深度负反馈条件下放大倍数的估算方法
文档格式:PPT 文档大小:827KB 文档页数:47
一、工厂电力负荷与负荷曲线 二、三相用电设备组计算负荷的确定 三、单相用电设备组计算负荷的确定 四、工厂计算负荷与年耗电量的计算 五、 尖峰电流及其计算
文档格式:PPT 文档大小:1.41MB 文档页数:51
(1) 工作原理 当正半周时二极管D1、D3导通, 在负载电阻上得到正弦波的正半周。 当负半周时二极管D2、D4导通, 在负载电阻上得到正弦波的负半周。 在负载电阻上正负半周经过合成, 得到的是同一个方向的单向脉动电压
文档格式:PDF 文档大小:1.41MB 文档页数:18
 电力系统的负荷与负荷曲线 电力系统负荷 负荷曲线  负荷特性
文档格式:PDF 文档大小:432.11KB 文档页数:6
对双环传动的轧机两质量模型进行理论分析并结合工程实际,提出了一种基于H∞滤波器和负荷观测器复合补偿的轧机主传动振动抑制新方法.在负荷观测器系统基础上,通过求解LMI的EVP问题来构造H∞滤波器得到轧辊速度观测值,并据此构造轧辊速度反馈环.较之传统状态观测器和负荷观测器法,该方法放宽了使用观测器的假设条件,将基于负荷观测器和状态观测器的补偿有机结合,实现了电机和轧辊速度的综合振荡抑制.仿真结果表明,与传统负荷观测器方法相比,该方法对电机和轧辊速度同时具有较好的振荡抑制效果
文档格式:PPT 文档大小:703.5KB 文档页数:60
6.1 反馈的基本概念及判断方法 6.2 负反馈放大电路的四种组态 6.3 负反馈放大电路的方块图及一般表达式 6.4 深度负反馈放大电路放大倍数的分析 6.5 负反馈对放大电路性能的影响 6.6 负反馈放大电路的稳定性 6.7 放大电路中其它形式的反馈
文档格式:DOC 文档大小:9.12MB 文档页数:22
第六章放大电路中的反馈 自测题 一、在括号内填入“√”或“×”,表明下列说法是否正确。 (1)若放大电路的放大倍数为负,则引入的反馈一定是负反馈。 () (2)负反馈放大电路的放大倍数与组成它的基本放大电路的放大倍数 量纲相同。() (3)若放大电路引入负反馈,则负载电阻变化时,输出电压基本不 变。 () (4)阻容耦合放大电路的耦合电容、旁路电容越多,引入负反馈后, 越容易产生低频振荡。()
文档格式:PPT 文档大小:3.18MB 文档页数:91
6.1 反馈的基本概念及判断方法 6.2 负反馈放大电路的四种基本组态 6.4 深度负反馈放大电路放大倍数分析 6.6 负反馈放大电路的稳定性 6.3 负反馈对放大电路的方框图 6.5 负反馈对放大电路性能的影响
文档格式:PDF 文档大小:1.02MB 文档页数:8
通过水溶液还原法在80 ℃合成Cu纳米线,再利用液相还原法在低温水溶液中将Au负载于其表面,最后通过暴露的Cu纳米线与Pt前驱体盐发生Galvanic置换反应,将Pt负载在Au?Cu纳米线表面,构成Pt?Au?Cu三元核壳结构纳米线。根据对样品形貌、结构的表征和分析,探讨了Pt?Au?Cu纳米线的合成机理。结果表明:合成纳米线物相组成为单质Cu,平均直径约为83 nm;负载Au后的Au?Cu纳米线平均直径约为90 nm,表面附着的小颗粒为单质Au颗粒,构成了核壳结构;负载Pt后得到Pt?Au?Cu三元核壳结构纳米线,平均直径约为120 nm。Cu纳米线表面Au颗粒的形成依赖于异相形核与长大机制,并遵循先层状后岛状生长的混合生长模式。负载Pt过程中存在Pt、Cu互扩散,使得最终纳米线表面多为Pt颗粒而整体则形成CuPt 合金相
首页上页2526272829303132下页末页
热门关键字
搜索一下,找到相关课件或文库资源 990 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有