产生导数的实际背景 微积分的发明人之一──Newton最早用导数研究的是如何确定 力学中运动物体的瞬时速度问题。 一个运动物体在时刻t 的位移可以用函数s st = ( )来描述,它在时 间段[, ] tt t + Δ 中位移的改变量为Δs s t t st = ( ) () + Δ − ,所以当Δt 很小的时 候,它在时刻t的瞬时速度可以近似地用它在[, ] tt t + Δ 中的平均速度 v t
紧集上的连续映射 为了将一元连续函数在闭区间上的重要性质推广到多元连续函 数,为此先定义多元函数在点集的边界点连续的概念。 定义 11.3.1 设点集 K ⊂ n R ,f : K→ m R 为映射(向量值函数), x K 0 ∈ 。如果对于任意给定的ε > 0,存在δ > 0,使得当 0 xx K ∈O( ,) δ ∩ 时