点击切换搜索课件文库搜索结果(1778)
文档格式:PPT 文档大小:582KB 文档页数:33
一、斯托克斯(stokes)公式 前面所介绍的 Gauss 公式是 Green 公式的推广 下面我们 从另一个角度来推广Green 公式。 Green 公式表达了平面闭区域上的二重积分 与其边界曲线上的曲线积分之间的联系, stokes 公式则是把曲面上的曲面积分与沿曲面的边界曲线 上的曲线积分联系起来
文档格式:PPT 文档大小:563KB 文档页数:23
在前面所讨论的定积分事实上是有条件 的:一是积分区间是有限区间,二是被积函数 在积分区间上有界。但实际问题常常要突破这 两个前提,因此需要对定积分作如下两种推广 :无穷区间上的积分——无穷限积分,无界函 数在有限区间上的积分——无界函数积分或瑕 积分,统称为广义积分或旁义积分,以前讨论 过的定积分称为常义积分
文档格式:PPT 文档大小:747.5KB 文档页数:29
①理解重积分概念,了解其基本性质 ②熟练掌握重积分的计算方法 ③掌握累次积分的换序法 ④掌握各种坐标系及坐标系下的面积元、体积元 ⑤理解重积分的实际背景,能用重积分解决立体体积、曲面面积、重心、转动惯量等实际问题
文档格式:PPT 文档大小:657.5KB 文档页数:26
平面和直线是最简单和最基本的空间图形。本 节和下节我们将以向量作为工具讨论平面和直线 的问题。介绍平面和直线的各种方程及线面关系、 线线关系。 确定一个平面可以有多种不同的方式,但在解析 几何中最基本的条件是:平面过一定点且与定向量 垂直。这主要是为了便于建立平面方程,同时我们 将会看到许多其它条件都可转化为此
文档格式:PPT 文档大小:634.5KB 文档页数:34
一、两向量的数量积 实例一物体在常力F作用下沿直线从点M1移动 到点M2,以5表示位移,则力F所作的功为 W= cos0(其中为F与的夹角) 启示两向量作这样的运算,结果是一个数量. 定义向量与b的数量积为a.b a.b=cos0(其中为a与b的夹角)
文档格式:PPT 文档大小:901KB 文档页数:44
关于函数的极限,根据自变量的变化过程,我们主 要研究以下两种情况: 一、当自变量x的绝对值无限增大时,f(x)的变化趋势, 即x → 时, f (x)的极限 二、当自变量x无限地接近于x0时,f(x)的变化趋势 即x → x0时, f (x)的极限
文档格式:PPT 文档大小:582KB 文档页数:33
Stokes公式 一、斯托克斯(stokes)公式 前面所介绍的 Gauss公式是 Green公式的推广 下面我们从另一个角度来推广 Green公式 Green公式表达了平面闭区域上的二重积分 与其边界曲线上的曲线积分之间的联系, stokes 公式则是把曲面上的曲面积分与沿曲面的边界曲线 上的曲线积分联系起来
文档格式:PPT 文档大小:560.5KB 文档页数:23
在前面所讨论的定积分事实上是有条件 的:一是积分区间是有限区间,二是被积函数 在积分区间上有界。但实际问题常常要突破这 两个前提,因此需要对定积分作如下两种推广 :无穷区间上的积分无穷限积分,无界函 数在有限区间上的积分无界函数积分或瑕 积分,统称为广义积分或旁义积分,以前讨论 过的定积分称为常义积分
文档格式:PPT 文档大小:1.1MB 文档页数:47
直接利用基本积分表和分项积分法所能计算的 不定积分是非常有限的,为了求出更多的积分,需 要引进更多的方法和技巧本节和下节就来介绍求积 分的两大基本方法换元积分法和分部积分法。 在微分学中,复合函数的微分法是一种重要的 方法,不定积分作为微分法的逆运算,也有相应 的方法。利用中间变量的代换,得到复合函数的 积分法换元积分法。通常根据换元的先后, 把换元法分成第一类换元和第二类换元
文档格式:PPT 文档大小:660.5KB 文档页数:26
平面及其方程 平面和直线是最简单和最基本的空间图形。本 节和下节我们将以向量作为工具讨论平面和直线 的问题。介绍平面和直线的各种方程及线面关系、 线线关系
首页上页2627282930313233下页末页
热门关键字
搜索一下,找到相关课件或文库资源 1778 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有