网站首页
校园空间
教师库
在线阅读
知识问答
大学课件
高等教育资讯网
大学课件分类
:
基础课件
工程课件
经管课件
农业课件
医药课件
人文课件
其他课件
课件(包)
文库资源
点击切换搜索课件
文库搜索结果(3731)
北京大学:《高等代数》课程教学资源(讲义)第九章 一元多项式环 9.3 实系数多项式根的分布
文档格式:DOC 文档大小:245.5KB 文档页数:3
9-3实系数多项式根的分布 9.3.1复系数多项式的根的绝对值的上界 命题设f(x)=axn+a1xn+…+an∈C[x],其中a≠0而n≥1。令 a=max{ 则对f(x)的任一复根a,有|ak1+A/a 证明如果A=0,则a=0,命题成立。下面设A>0 如果|a1+A/a,那么,因为f(a)=0,故有 la Haa++aa a+…+an ≤A(ar-++1)=a(la--1)/(a-1) 现在|a>1,故从上式立刻得到 la a\ Ala\ /(al-1) 两边消去|a,得|ak1+A/a|,矛盾
北京大学:《高等代数》课程教学资源(讲义)第九章 一元多项式环 9.1 一元多项式环的基本理论(9.1.7-9.1.11)
文档格式:DOC 文档大小:433.5KB 文档页数:5
北京大学:《高等代数》课程教学资源(讲义)第九章 一元多项式环 9.1 一元多项式环的基本理论(9.1.7-9.1.11)
北京大学:《高等代数》课程教学资源(讲义)第九章 一元多项式环 9.1 一元多项式环的基本理论(9.1.7-9.1.11)
文档格式:DOC 文档大小:434KB 文档页数:4
9.1.7用形式微商判断多项式是否有重因式 定义9.10设f(x)=ax+a1x+…+an-1x+an∈K[x],定义 f\(x)=na\+(n-1)\-+..+[], 称f(x)为f(x)的一阶形式微商。 设f(x)的k-1阶形式微商已定义,记作f((x)则定义它的k阶形式微商fx)为 f(x)的一阶形式微商:f((x)=(f((x)另外我们约定f(x)=f(x) 命题设f(x)∈K[x],如果K[x]内的不可约多项式p(x)是f(x)的k重因式,则 p(x)是f(x)的k-1重因式
北京大学:《高等代数》课程教学资源(讲义)第八章 有理整数环 8.2 同余式
文档格式:DOC 文档大小:175KB 文档页数:2
8-2同余式 8.2.1有理整数环中的同余的定义 定义8.5设m是一个正整数,若a,b∈Z,且ba∈(m),亦即m(b-a),则 称b与a模m同余,记作b=a(modm)。不难得到,b与a模m同余就是它们用m做带 余除法所得的余数相同。整数模m同余为一等价关系,验证如下: 1、反身性:a=a(modm) 2、对称性:若b=a(modm),则a=b(modm) 3、转递性:若a=b(modm),b=c(modm),则
北京大学:《高等代数》课程教学资源(讲义)第八章 有理整数环 8.1 有理整数环的基本概念
文档格式:DOC 文档大小:419.5KB 文档页数:5
8-1有理整数环的基本概念 8.1.1有理整数环的基本概念 全体整数所组成的集合中有两种运算:加法和乘法,而且它们满足下面运算法则: 1)加法满足结合律; 2)加法满足加换律 3)有一个数0,是对任意整数a,0+a=a; 4)对任意整数a,存在整数b,使b+a=0 5)乘法满足结合律 6)有一个数1,是对任意整数a,la=a 7)加法与乘法满足分配律:a(b+c)=ab+ac
北京大学:《高等代数》课程教学资源(讲义)第七章 线性变换的Jordan标准型 7.2 一般线性变换的 Jordan标准型(1/2)
文档格式:DOC 文档大小:51.5KB 文档页数:1
准对角矩阵称为 Jordan形矩阵,而主对角线上的小块方阵J称为 Jordan块 定理设A是数域K上的n维线性空间V上的线性变换.如果A的特征值全属于K, 则A在V的某组基下的矩阵为 Jordan形,并且在不计 Jordan块的意义下 Jordan形是唯 一的. 证明:对n作数学归纳法
北京大学:《高等代数》课程教学资源(讲义)第六章 带度量的线性空间(6.3)酉空间(2/2)
文档格式:DOC 文档大小:285KB 文档页数:3
设A是n维酉空间V内的线性变换,如果V内的线性变换A满足a,BV,有 (Aa, B)=(a, B) 则称A是A的共轭变换.A为A的共轭变换当且仅当它们在标准正交基下的矩阵互为共轭 转置. 共轭变换的五条性质: 1)E=E 2)(A)=A 3)(kA)*=kA 4)(A+B)=a+B 5)(AB)'=B'A' 如果A=A,则称A是一个厄米特变换
北京大学:《高等代数》课程教学资源(讲义)第六章 带度量的线性空间(6.3)酉空间(1/2)
文档格式:DOC 文档大小:194KB 文档页数:3
北京大学:《高等代数》课程教学资源(讲义)第六章 带度量的线性空间(6.3)酉空间(1/2)
北京大学:《高等代数》课程教学资源(讲义)第六章 带度量的线性空间(6.2)欧氏空间中特殊的线性变换(续)
文档格式:DOC 文档大小:75KB 文档页数:1
第六章6-2欧氏空间中特殊的线性变换(续) 命题正交矩阵的特征多项式的根的绝对值等于1 证明设入∈C是正交矩阵A的特征多项式的根,则≠0.齐次线性方程组(e-a)X=0 在C内有非零解向量 ( a:a 显然Aa=a=a'a'=a'a'a==a'aa=aa=aa=1从而 入|=1 推论正交矩阵的特征值只能是±1 命题设A是n维欧氏空间V上的正交变换,若A的特征多项式有一个根=e
北京大学:《高等代数》课程教学资源(讲义)第六章 带度量的线性空间(6.1)欧几里得空间
文档格式:DOC 文档大小:98KB 文档页数:3
第六章带度量的线性空间 6-1欧几里得空间 设f是实线性空间V上的一个正定、对称的双线性函数,则Va,B∈V,(a,): f(a,B)称为向量a与B的内积;具有内积的实线性空间称为欧几里得空间(简称欧氏空 间) 对任意α∈V,定义 lalv(a,a) 为向量a的长度或模.|a|=1时,称a为单位向量 命题1.1(柯西-布尼雅可夫斯基不等式)对欧氏空间V内任意两个向量a,,有
首页
上页
298
299
300
301
302
303
304
305
下页
末页
热门关键字
基础化学原理
金融保险
私立华联学院
考察
精细化工产品的合成
组装电脑
英汉语对比
医学保健
序列分析
新媒体(营销)管理
湘潭大学
屋架设计
通信系统原理
税务会计
监狱管理
化工热力学
给排水
方程
法律经济学
电路电子技术
产业管理
《有机化学》
A+
MATLAB基础与应用
ORACLE数据库
pascal程序设计
二胡
东南大学
电脑
电缆材料
地震分析技术
代数
大学
材料加工
编辑
北方工业大学
ASP网络编程
DSP原理与应用
CPLD原理及应用
《化工原理》
搜索一下,找到相关课件或文库资源
3731
个
©2008-现在 cucdc.com
高等教育资讯网 版权所有