点击切换搜索课件文库搜索结果(4533)
文档格式:PPT 文档大小:876.5KB 文档页数:29
有理函数的不定积分 形如Pm(x)的函数称为有理函数,这里pm(x)和qn(x)分别是m次和 an(x) n次多项式。在本节中,我们将通过介绍求一般有理函数的不定积分 的方法,证明这样的一个结论:有理函数的原函数一定是初等函数
文档格式:PPT 文档大小:688.5KB 文档页数:22
待定型极限和L' Hospital法则 我们将这种类型的极限称为待定型,简称型。 待定型极限除了型以外,还有型、0°型等几种。我们先讨论如何求型和型的极限,其余几 ∞ 种类型的极限都可以化成这两种类型进行计算
文档格式:PPT 文档大小:959.5KB 文档页数:29
无界区域上的反常重积分 设 D为平面 2 R 上的无界区域,它的边界是由有限条光滑曲线组 成的。假设D上的函数 f (x, y) 具有下述性质:它在D中有界的、可求 面积的子区域上可积。并假设所取的割线 为一条面积为零的曲线
文档格式:PPT 文档大小:1.37MB 文档页数:40
第二类曲线积分 设L 为空间中一条可求长的连续曲线,起点为 A,终点为B(这 时称L 为定向的)。一个质点在力 F(x, y,z) = P(x, y,z)i + Q(x, y,z) j + R(x, y,z)k 的作用下沿L 从 A移动到B , 我们要计算F(x, y,z)所作的 功
文档格式:PDF 文档大小:311.83KB 文档页数:34
反常积分 前面讨论 Riemann 积分时,假定了积分区间[, ] a b 有限且被积函 数 f x( )在[, ] a b 上有界,但在实际应用中经常会碰到不满足这两个条 件,却需要求积分的情况。所以,有必要突破 Riemann 积分的限制 条件,考虑积分区间无限或被积函数无界的积分问题,这样的积分称 为反常积分(或广义积分),而以前学过的 Riemann 积分相应地称 为正常积分(或常义积分)
文档格式:PDF 文档大小:340.11KB 文档页数:27
微元法 我们先回忆一下求曲边梯形面积S 的步骤:对区间[, ] a b 作划分 ax x x x b = 012 < < <\< n = , 然后在小区间 ],[ 1 ii xx − 中任取点ξ i ,并记 =Δ − iii −1 xxx ,这样就得到了小 曲边梯形面积的近似值 i ii Δ ≈ ξ )( ΔxfS 。最后,将所有的小曲边梯形面积 的近似值相加,再取极限,就得到
文档格式:PDF 文档大小:166.97KB 文档页数:24
链式规则 设 = yxyxfz ),(),,( ∈ Df 是区域Df ⊂ 2 R 上的二元函数,而 : g g D → 2 R , 6 vuyvuxvu )),(),,((),( 是区域Dg ⊂ 2 R 上的二元二维向量值函数。如果 g 的值域 g D( ) g ⊂ Df , 那么可以构造复合函数 = fz D g = vuvuyvuxf ),()],,(),,([ ∈ Dg
文档格式:PDF 文档大小:199.09KB 文档页数:22
我们将这种类型的极限称为待定型,简称型。 待定型极限除了型以外,还有型、0∞型、∞±∞型、∞型、 1型、0°型等几种。我们先讨论如何求型和型的极限,其余几 种类型的极限都可以化成这两种类型进行计算
文档格式:PDF 文档大小:321.1KB 文档页数:29
无界区域上的反常重积分 设 D为平面 2 R 上的无界区域,它的边界是由有限条光滑曲线组 成的。假设 D上的函数 f xy (,) 具有下述性质:它在 D中有界的、可 求 面积的子区域上可积
文档格式:PDF 文档大小:391.06KB 文档页数:40
第二类曲线积分 设L为空间中一条可求长的连续曲线,起点为 A,终点为B(这 时称L为定向的)。一个质点在力 F = i + j + zyxRzyxQzyxPzyx ),,(),,(),,(),,( k 的作用下沿L从 A移动到B , 我们要计算F zyx ),,( 所作的 功
首页上页337338339340341342343344下页末页
热门关键字
搜索一下,找到相关课件或文库资源 4533 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有