点击切换搜索课件文库搜索结果(8996)
文档格式:PDF 文档大小:939.89KB 文档页数:7
采用一种新型熔体表面脉冲电磁技术对7A04铝合金半连续铸造凝固组织细化处理,分析脉冲电磁场对凝固组织及性能的影响.引入势能的观点,探讨脉冲磁能作用下的晶体形核动力学及初生晶核运动形式.结果表明,经表面脉冲电磁场处理后,凝固组织由晶粒尺寸粗大的玫瑰结构转变为细小且圆整的球状结构,铸锭心部及边部晶粒尺寸分别下降22.7%和14.2%,强度、塑性均有提高.动力学分析认为,脉冲电磁能降低体系形核所需的临界吉布斯自由能是增加形核率的重要原因,同时可导致初生α-Al运动的势能增加,促使初生α-Al颗粒优先到达稳定位置
文档格式:PDF 文档大小:703.43KB 文档页数:7
为了实现微尺度辊缝形状调节,提出了辊型电磁调控技术,并自行设计制造了φ270 mm×300 mm辊型电磁调控实验平台.通过电磁-热-力耦合数理建模,并对比分析相同工况实验和仿真结果,发现两者结果十分接近,模型可靠.在此基础上,分析了不同等效电流密度和频率下轧辊凸度及轧辊凸度增长速率随加热时间的变化规律,给出了等效电流密度、频率、加热时间对辊型曲线的影响,并从避免电磁棒局部温度过高及便于轧辊凸度调节出发,给出了合理的工艺参数
文档格式:DOC 文档大小:992.5KB 文档页数:4
1、试确定图 1-1 中 2、如右图所示电路,电流 I=( ) 3、如右图所示电路,电流 I=( )
文档格式:PPT 文档大小:2.25MB 文档页数:39
7.1 反馈的基本概念 7.2 负反馈的四种组态 7.3 负反馈对放大电路性能的影响 7.4 负反馈放大电路的计算 7.5 负反馈放大电路的自激振荡
文档格式:PDF 文档大小:4.07MB 文档页数:10
以电炉镍铁渣和普通高炉渣为主要原料,采用Petrurgic一步法制备了微晶玻璃,并结合力学性能测试,对样品进行了X射线衍射(XRD)、扫描电镜(SEM)等分析,讨论了电炉镍铁渣和普通高炉渣配比、Mg2+含量以及晶核剂TiO2对成品微观结构及性能的影响规律.结果表明:将熔渣冷却至900℃结晶和650℃退火,能够制备出性能优良的微晶玻璃.当Mg2+含量增加且析出晶体为单一辉石族矿物时,微晶玻璃具有较高的力学性能.电炉镍铁渣或Mg2+含量增加,会导致其辉石族矿物含量增加,当两种渣混合掺量达到90%(镍铁渣质量分数50%,高炉渣质量分数为40%)且外掺2% MgO时,所制备微晶玻璃结构致密,仅含有单一辉石族矿物,包括透辉石、普通辉石和斜顽辉石,从而具有最优的力学性能,其抗折强度达210 MPa,抗压强度达1162 MPa.电炉镍铁渣或者MgO含量进一步增加,会导致镁橄榄石析出,此时微晶玻璃的力学性能显著下降.TiO2含量的增加不改变微晶玻璃晶体种类,合适掺入TiO2(本实验为质量分数2%)能够增强透辉石含量,提升性能;但过量掺入会抑制晶体生长,导致其性能下降
文档格式:PPT 文档大小:3.31MB 文档页数:39
一、放大的概念 输入、输出信号表现为电压或电流,因此,放大电路具有两 个端口
文档格式:PDF 文档大小:1.74MB 文档页数:11
高熵合金与非晶合金作为新一代金属材料,具备许多优异的物理、化学及力学性能,在柔性电子领域展现出巨大的应用潜力。传统的块体高熵合金与非晶合金虽然性能优异,但由于材料本身的刚性特点无法满足可变形电子设备的柔性需求,因此需要通过一定方式如降低维度、设计微结构等赋予其柔性特征。在简述高熵合金柔性纤维的力学性能特点的基础上,介绍了高熵合金薄膜作为潜在柔性材料的制备方式与结构性能特点,总结了非晶合金薄膜应用于电子皮肤、柔性电极、微结构制作等柔性电子领域中的最新进展,最后讨论了现有工作的不足之处并对未来柔性电子的发展前景进行了展望
文档格式:DOC 文档大小:74.5KB 文档页数:2
1.简述图1所示的降压斩波电路的工作原理。 2.在图1所示的降压斩波电路中,已知E=200V,R=10,L值极大,E=30V。采用脉宽调制控制方式,当T=50us,ton=20us时,计算输出电压平均值U、输出电流平均值
文档格式:PPT 文档大小:4.28MB 文档页数:67
5.1感应电机的结构和运行状态 5.2三相感应电动机的磁动势和磁场 5.3三相感应电动机的电压方程和等效电路 5.4感应电动机的功率方程和转矩方程 5.5感应电动机参数的测定 5.6感应动机的转矩一转差率曲线 5.8感应电动机的工作特性
文档格式:PPT 文档大小:1.01MB 文档页数:52
5.1 换流方式 5.2 电压型逆变电路 5.3 电流型逆变电路 5.4 多重逆变电路和多电平逆变电路
首页上页379380381382383384385386下页末页
热门关键字
搜索一下,找到相关课件或文库资源 8996 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有