点击切换搜索课件文库搜索结果(3964)
文档格式:DOC 文档大小:245.5KB 文档页数:3
9-3实系数多项式根的分布 9.3.1复系数多项式的根的绝对值的上界 命题设f(x)=axn+a1xn+…+an∈C[x],其中a≠0而n≥1。令 a=max{ 则对f(x)的任一复根a,有|ak1+A/a 证明如果A=0,则a=0,命题成立。下面设A>0 如果|a1+A/a,那么,因为f(a)=0,故有 la Haa++aa a+…+an ≤A(ar-++1)=a(la--1)/(a-1) 现在|a>1,故从上式立刻得到 la a\ Ala\ /(al-1) 两边消去|a,得|ak1+A/a|,矛盾
文档格式:PDF 文档大小:1.16MB 文档页数:29
复习要求 1.对角线法计算二阶和三阶行列式.上(下三角行列式,对角行列式 2.会求排列的逆序数(P.7,例4) 3.理解n阶行列式的定义D=A=det(ai=(-1)apa2p2anpn 4.熟练掌握行列式的性质,用行列式的性质计算行列式
文档格式:DOC 文档大小:345.5KB 文档页数:7
2.3逆矩阵 定义:对于Ann,若有Bn满足AB=BA=E,则称A为可逆矩阵, 且B为A的逆矩阵,记作A-1=B. 定理1若A为可逆矩阵,则A的逆矩阵唯一 证设B与C都是A的逆矩阵,则有
文档格式:PDF 文档大小:98.28KB 文档页数:5
1.1多项式及整除性 定义1.1设Ω是一些数组成的集合,而且不只含一 个数,如果对于任意,它们的和、差、积、商(除数不为0)均含于Ω,则称Ω是一个数域 。 命题1.1每个数域都包含有理数域,即有理数域是最小的数域. QRC是三个最重要的数域,但数域并非仅此三种,如下面例子所示
文档格式:PDF 文档大小:158.46KB 文档页数:23
定义3.1设D是一个n阶行列式在D中 任意选定k个行,k个列(1≤k≤n) ( 1)这些行、列相交处的元素按其原有的 工 相对位置就构成一个k阶行列式M, 称为D的一个k阶子式; (2)这些行、列以外的元素按其原有的相 对位置就构成一个n-k阶行列式M 称为M的余子式;记为M
文档格式:PDF 文档大小:106.36KB 文档页数:8
3.2矩阵的乘法 定义2.1(矩阵的乘法)设A=(a)是一个mxn矩阵,B=(b)是一个 nxp矩阵即A的列数等于B的行数规定A与B的记AB是一个m×p矩阵 工其第i行第j列的元素等于A的第行各元素与B的第列对应元素的乘积 之和,即,AB=
文档格式:PDF 文档大小:143KB 文档页数:22
3.7初等变换与初等矩阵 定义7.1下列三种对矩阵的变换称为矩阵的 初等行(列)变换 工1.把第i行(列)和第j行(列)互换位置
文档格式:PDF 文档大小:115.9KB 文档页数:12
3.8矩阵的秩数 定义8.1设A是任意矩阵若A=0,则 说A的秩数为0;若A≠0,则A的非零子式的 最高阶数就称为A的秩数,记为秩A 显然对于任意的mxn矩阵A,均有 秩A≤min{m,n}.当秩A=min{m,n}时,称 是满秩矩阵;特别地,当秩A=m时,称之 为行满秩的;当秩A=n时,称之为列满秩的
文档格式:PDF 文档大小:94.55KB 文档页数:6
1.3最大公约式 定义31设f(x),g(x)是2x中不全为零的多项式如果d(x) 是f(x)和g(x)公因式,而且f(x)与g(x)的任何公因式均能整 除d(x)则称d(x)是f(x)与g(x)的一个最大公因式 王定31数城Q上的任意两个不全为零的多项式8(0 均有最大公因子,且对于它们的任意最大公因式d(x)均有 0(x),v(x)∈[x使得 d(x)=o(xf(x)+y(x)g(x)
文档格式:PPT 文档大小:569.5KB 文档页数:30
重积分的应用 把定积分的元素法推广到二重积分的应用中 若要计算的某个量U对于闭区域D具有可加性 (即当闭区域D分成许多小闭区域时,所求量U相应 地分成许多部分量,且U等于部分量之和),并且 在闭区域D内任取一个直径很小的闭区域do时, 相应地部分量可近似地表示为f(x,y)do的形式, 其中(x,y)在do内.这个f(x,y)do称为所求量U 的元素,记为dU,所求量的积分表达式为
首页上页383384385386387388389390下页末页
热门关键字
搜索一下,找到相关课件或文库资源 3964 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有