点击切换搜索课件文库搜索结果(6123)
文档格式:PDF 文档大小:5.7MB 文档页数:8
研究了不同体积分数原位合成SiC颗粒增强MoSi2基复合材料在900℃空气中1000 h的长期氧化行为.复合材料氧化1000 h后,均未发生pest现象.6种材料都表现出优异的氧化抗力,原位合成的复合材料的氧化抗力好于传统的通过热压商用MoSi2粉末和SiC粉末混合物制备的复合材料(外加复合材料).复合材料氧化膜表层为连续致密的α-SiO2(α-石英),下层为Mo5Si3,复合材料的氧化过程不仅是O2与MoSi2的作用,SiC也同时发生了氧化.材料900℃下发生硅的选择性氧化,正是这种硅的选择性氧化在MoSi2的表面自发形成一层致密的SiO2保护膜,使材料表现出优异的长期氧化抗力
文档格式:PDF 文档大小:4.35MB 文档页数:8
以硅锰脱氧的SWRH82B热轧盘条为实验钢种,研究增氮析氮法对硅锰脱氧钢中夹杂物的去除效果,并设置0.02、0.035、0.05、0.065和0.08 MPa五组增氮压力进行热态实验.实验结果表明:在1873 K的温度下,钢液经过增氮20 min、真空处理30 min后,不同炉次钢中T[O]均下降至1×10-5以下,最低为4×10-6,T[N]均下降至5×10-6以下,最低为2×10-6,夹杂物去除率均为40%以上,T[O]去除率均大于78%,表明该技术对硅锰脱氧钢中的夹杂物及T[O]有良好的去除效果.此外,随着增氮压力的升高,钢中T[O]与夹杂物去除率均有所升高,当充氮压力为0.08 MPa时,T[O]与夹杂物去除率分别达到89.2%和87.4%.理论分析表明,随着增氮压力的升高,气泡形核率增大、钢中生成气泡数量增多、钢中气泡的密度增加,从而提升气泡去除夹杂物的效率
文档格式:PDF 文档大小:1.26MB 文档页数:10
三十多年来,多种层状金属复合材料的制备方法应运而生,蓬勃发展,包括爆炸复合法、轧制复合法、热压扩散法和沉积复合法等。爆炸复合法在中厚板的制备上具有不可替代的优势,其产品广泛应用于军工、船舶、电力和化工等领域。轧制法可以批量生产大尺寸层压板,应用最为广泛,目前层压板已经广泛用于汽车、船舶和航空航天等领域。真空热压扩散法由于可以避免氧气等气体的污染,几年来在Ti/Al、Ti/TiAl和Ti6Al4V/TiAl层状复合材料的制备上备受关注。沉积复合法制备的层状金属复合材料在作为耐蚀、耐磨涂层,高强导线,人体植入材料方面表现出巨大的潜力。在综述层状金属复合材料发展历程的基础上,介绍了层状金属复合材料的制备方法及各自的优缺点,并对层状金属复合材料目前在国内外的研究现状进行了分析和介绍
文档格式:PDF 文档大小:9.27MB 文档页数:8
在直径为650 mm的铝合金热顶半连续铸造过程中施加双源超声振动系统, 研究3种超声辐射杆浸入深度对铸锭宏观凝固组织的影响.基于铝合金铸锭凝固组织形貌的检测结果以及ANSYS等有限元软件对铸造过程中声场的仿真结果, 深入探讨了超声辐射杆在不同的施振深度下对铝合金铸锭凝固组织细化机制的影响.结果表明: 随着超声辐射杆施振深度的增加, 铸锭截面组织整体进一步细化, 晶粒形状由发达的枝晶变为等轴枝晶; 由于超声辐射杆端面以及柱面存在几个固定位置处振动波峰, 在铝熔体中不同的超声施振深度下存在不同的超声空化范围, 进而导致凝固组织的细化机制也不同
文档格式:PDF 文档大小:4.56MB 文档页数:9
从非开挖水平定向钻进(Horizontal directional drilling,HDD)装备技术、地下生命线工程的探测与信息化、双向对穿HDD技术、大口径HDD技术、HDD回拖力计算模型、地表变形与冒浆6个方面开展了文献调研工作,分析了HDD装备与技术研究应用进展:世界上最大回拖力(20000 kN)的电驱动钻机被设计并研发;电磁感应法被广泛用于既有生命线的空间探测,复杂干扰下的数据解析与精度提高仍是研究重点;基于三维数据,融合建筑信息模型、人工智能、大数据等技术,借鉴美国“811”体系,局部完成了地下生命线的信息化;采用对穿技术完成了长距离的地下生命线敷设;基于过程化的HDD工艺参数、设备参数和控制监测技术被大量应用,有效提升了应用中的风险识别能力;针对不同地层条件下的回拖力计算为设备选型提供了依据,并为HDD多学科融合研究提供了途径;复杂地质条件下的冒浆、卡钻等热点和难点也得到初步探索研究,构建了理论、实验和数值分析模式,为提高HDD的应用效率和质量提供了依据。综合国内外研究进展,进一步分析了HDD的发展趋势
文档格式:PDF 文档大小:949.89KB 文档页数:6
高温质子导体固体电解质 Ba3Ca1+xNb2−xO9−δ 化学性质稳定,中低温电导率较高,具有较好的应用前景. 采用固相合 成法制备得到了复合钙钛矿相的 Ba3Ca1+xNb2−xO9−δ(x=0、0.10、0.18、0.30)材料. 随着 Ca 掺杂量的增加 Ba3Ca1+xNb2−xO9−δ 样 品的电导率先增加后降低,x=0.18 的样品电导率最高. Ba3Ca1+xNb2−xO9−δ 材料在含氢中的电子空穴迁移数较低,当温度低于 750 ℃ 时,材料中质子导电为主;当温度达 800 ℃ 后,材料中氧离子导电为主. x=0.10 的样品质子迁移数最高,随着掺杂量的 增加样品氧离子迁移数逐渐增大,质子迁移数逐渐降低
文档格式:PDF 文档大小:992.84KB 文档页数:10
综述了炼钢过程中合金减量化的研究现状,分别从合金的基本物理化学特征、合金的加入工艺和炼钢工艺三大方面讨论了合金收得率的研究进展情况.重点介绍了合金粉化控制技术、合金在真空条件下的损失控制技术、合金的熔化控制技术和合金替代技术的应用,为炼钢过程中的合金减量化研究提供借鉴.合金减量化技术的应用前景非常可观,合金的损失途径和损失机理研究、合金的结构设计、合金的替代技术和合金的管理管控技术可以作为炼钢过程中合金减量化研究的重点方向
文档格式:PDF 文档大小:11.16MB 文档页数:16
相变储能技术的发展对于促进新能源开发和提高能源利用效率具有非常重要的意义。相变材料由于具有高储能密度和小体积变化等优势引起了人们的广泛关注。然而,相变材料在固–液相转变过程中易发生液体泄漏而限制了其应用。因此,人们选择用多孔支撑材料来解决相变材料的泄露问题。介孔二氧化硅材料由于具有良好的物理化学稳定性、生物相容性、阻燃性能、低毒性、耐腐蚀性、尺寸可控、表面形貌可调和高比表面积等优点,其作为载体材料能综合提高相变复合物的各方面性能并拓宽相变储能材料的应用空间。对近年来国内外关于介孔二氧化硅载体的孔尺寸、孔结构和孔表面性质对相变材料结晶行为的影响等方面进行了综合分析,并对今后提高介孔二氧化硅相变材料储能效率的研究方法的前景做了展望
文档格式:PDF 文档大小:19.62MB 文档页数:9
基于烧结矿的非均性, 发现了矿相结构的三种分布模式, 并对矿相结构的形成机理进行了阐述.首先, 基于烧结矿的手标本鉴定特征把某钢厂烧结矿划分成了三类.其次, 对矿相结构的鉴定发现, 第1类、第2类、第3类这三类烧结矿的矿相结构在空间上依次具有\均一状、同心环状、互嵌状\三种分布模式.均一状分布的矿相结构形成于温度较高、还原性较强和混料均匀的稳定条件之中, 主要为交织熔蚀-熔蚀结构, 具有良好的冶金性能; 同心环状分布的矿相结构从外部带到内部带依次为交织熔蚀结构、熔蚀结构和赤铁矿粒状结构, 多以独立单元的形式出现, 其所在区域工艺条件的恶化并不会对烧结矿总体的结构和冶金性能造成太大影响; 交织熔蚀结构、赤铁矿粒状结构和铁酸钙聚集区交叉形成的互嵌状矿相结构, 多形成于温度较低、气流不稳定和混料不均匀的条件之中, 易成片出现而导致烧结矿结构和冶金性能的恶化.最后, 冶金性能分析显示, 第1、2类烧结矿各项冶金性能指标良好, 具有互嵌状分布模式的第3类烧结矿由于矿相结构的不均匀, 冶金性能相对较差.结果表明, 这种基于矿相结构分布模式的研究方式, 有利于对矿相结构形成机理的阐述, 更助于对烧结原料、烧结气氛等工艺条件的调控, 对烧结矿冶金性能的改善具有一定理论价值
文档格式:PDF 文档大小:1.25MB 文档页数:7
目前,通过多孔高导热载体与相变材料复合的方式提升有机复合相变材料综合性能的方法得到广泛应用。多孔碳作为负载能力强,导热性能良好的载体材料成为研究的热点,但如何绿色、廉价、简易地制备出该类载体仍是研究的难点。本文以天然生物质材料松木和竹木为碳源,在梯度温度和氮气气氛下热处理,使生物质材料碳化并进一步发生石墨化转变,制备出生物质天然孔道结构的多孔高导热碳基载体材料。采用真空熔融浸渍法将有机相变材料石蜡和多孔碳基载体材料进行高效复合,制备得到生物质多孔碳/石蜡复合相变材料。通过扫描电子显微镜(SEM)、红外光谱仪(FTIR)、同步热分析仪(TGA)、X射线衍射仪(XRD)、拉曼光谱仪(Raman)、压汞分析仪(MIP)、差示扫描量热仪(DSC)、激光导热仪对载体材料及复合相变材料进行结构表征和性能测试。测试结果表明:生物质多孔碳载体材料孔道结构保存完好,石墨化转变明显,保证了有机相变芯材的高效稳定负载。传热效率上,相比于纯石蜡芯材,以松木和竹木为碳源制得的多孔碳/石蜡复合相变材料热导率分别提高了100%和216%,达到了0.48 W·m?1·K?1和0.76 W·m?1·K?1。在此基础上,通过对比松木和竹木为原料制得的复合相变材料的芯材负载量,相变焓值,热导率的变化,进一步探讨了生物质结构对复合相变材料性能的影响机制
首页上页390391392393394395396397下页末页
热门关键字
搜索一下,找到相关课件或文库资源 6123 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有