微元法 我们先回忆一下求曲边梯形面积S 的步骤:对区间[, ] a b 作划分 ax x x x b = 012 < < <\< n = , 然后在小区间 ],[ 1 ii xx − 中任取点ξ i ,并记 =Δ − iii −1 xxx ,这样就得到了小 曲边梯形面积的近似值 i ii Δ ≈ ξ )( ΔxfS 。最后,将所有的小曲边梯形面积 的近似值相加,再取极限,就得到
紧集上的连续映射 为了将一元连续函数在闭区间上的重要性质推广到多元连续函 数,为此先定义多元函数在点集的边界点连续的概念。 定义 11.3.1 设点集 K ⊂ n R ,f : K→ m R 为映射(向量值函数), x K 0 ∈ 。如果对于任意给定的ε > 0,存在δ > 0,使得当 0 xx K ∈O( ,) δ ∩ 时