EROSPACE DYNAMiCS EXAMPLE: GWE ACCELERATIoN of THE TIP 0F认ERU0毛R人TM5Hc人AF LDk小 G For A650LUT # CCELER升T10 N UTH RES/∈ct T0wE工NERT1 AL FRAME (∈ TH IN THiS CASE)
Spring 2003 Lagrange's equations Joseph-Louis lagrange 1736-1813 http://www-groups.dcs.st-and.ac.uk/-history/mathematicians/lagranGe.html Born in Italy. later lived in berlin and paris Originally studied to be a lawyer Interest in math from reading halleys 1693 work on
NUMERICAL SOLUTION GIEN A COMPLEX SET of OYNAMICS (t)=F(x) WHERE F() COULD BE A NONLINEAR FUNCTION IT CAN BE IMPOSS IBLE To ACTVALLY SOLVE FoR ( ExACTLY. OEVELOP A NUMERICAL SOLUTION. CANNED CoDES HELP US THIS TN MATLAB BUT LET US CONSDER THE BASiCS
Spring 2003 Derivation of lagrangian equations Basic Concept: Virtual Work Consider system of N particles located at(, x2, x,,.x3N )with 3 forces per particle(f. f, f..fn). each in the positive direction
LECTURE+ 12 RIGID BODY OYNAAICS 工 MPLICAT IONsF GENERAL ROTATIONAL OYWMICS EJLER's EQUATIN of MOTION TORQVE FREE SPECIAL CASES. PRIMARY LESSONS: 30 ROTATONAL MOTION MUCH MORE COMPLEX THAN PLANAR (20) EULER'S E.o.M. PROVIOE STARTING POINT FoR ALL+ OYwAmIcs SOLUTINS To EvlER's EQuATIONS ARE COMPLEX BUT WE CAN OEVE LOP GooO GEOMETRIC VISUALIZATION TOOLS
Aircraft Dynamics First note that it is possible to develop a very good approximation of a key motion of an aircraft(called the Phugoid mode) using a very simple balance between the kinetic and potential energies Consider an aircraft in steady, level fight with speed Uo and height ho
Local anesthesia Topical anesthesia(表面麻醉 Local Infiltration(局部浸润麻醉) small area anesthetized (one or two teeth) solution deposited near terminal nerve endings