点击切换搜索课件文库搜索结果(5609)
文档格式:PDF 文档大小:449.96KB 文档页数:53
Green 公式 设L为平面上的一条曲线,它的方程是 = + tytxt )()()( jir ,α ≤ t ≤ β 。 如果 α = rr β )()( ,而且当 ),(, tt 21 ∈ α β , 21 ≠ tt 时总成立 )()( 1 2 ≠ rr tt ,则称 L为简单闭曲线(或 Jordan 曲线)。这就是说,简单闭曲线除两个端 点相重合外,曲线自身不相交
文档格式:PDF 文档大小:376.41KB 文档页数:41
曲线坐标 设U 为uv平面上的开集,V 是xy平面上开集,映射 T: ( , ), ( , ) x = x uv y yuv = 是U 到V 的一个一一对应,它的逆变换记为T u uxy v vxy − = = 1: ( , ), ( , )。 在U 中取直线u u = 0,就相应得到xy平面上的一条曲线 x xu v y yu v = ( , ), ( , ) 0 0 = , 称之为v -曲线;同样,取直线v v = 0 ,就相应得到xy平面上的u -曲线, x xuv y yuv = ( , ), ( , ) 0 0 =
文档格式:PDF 文档大小:314.31KB 文档页数:29
在一元定积分中已经学过计算曲边梯形等平面图形的面积,但是 并不能将其简单照搬到一般的平面点集上,因为一般平面点集是否有 面积还是一个问题。为此,先引入面积的定义
文档格式:PDF 文档大小:322.17KB 文档页数:29
无条件极值 定义 12.6.1 设 D n ∈R 为开区域, f x)( 为定义在 D 上的函数, 0 x ),,,( 002 01 n = \ xxx ∈D。若存在 0 x 的邻域 ),( 0 x rO ,使得 )),()(()()( 0 0 ≥ 或 ≤ ffff xxxx x ∈ ),( 0 x rO , 则称 0 x 为 f 的极大值点(或极小值点);相应地,称 )( 0 f x 为相应的极 大值(或极小值);极大值点与极小值点统称为极值点,极大值与极 小值统称为极值
文档格式:PDF 文档大小:143.03KB 文档页数:13
中值定理 定义 12.3.1 设 n D ⊂ R 是区域。若连结 D中任意两点的线段都完 全属于D,即对于任意两点 x0, 1 x ∈ D和一切λ ∈ ]1,0[ ,恒有 )( 0 + λ − xxx 01 ∈ D, 则称D为凸区域
文档格式:PDF 文档大小:287.26KB 文档页数:56
偏导数 定义 12.1.1 设 D⊂ 2 R 为开集, z f xy xy = ( , ), ( , )∈ D 是定义在 D 上的二元函数, ),( 00 yx ∈D 为一定点。如果存在极限
文档格式:PDF 文档大小:266.22KB 文档页数:33
多元函数 定义 11.2.1 设 D 是 n R 上的点集,D 到 R 的映射 f : D → R , x 6 z 称为 n 元函数,记为 z f = ( ) x 。这时,D 称为 f 的定义域, f ( ) D = { R | ( ), } z zf ∈ = ∈ xx D 称为 f 的值域,Γ= 1 {(,) R | ( ), } n z zf + x x ∈= ∈x D 称为 f 的图像
文档格式:PDF 文档大小:316.45KB 文档页数:59
点态收敛 设un(x)(n=12,3,…)是具有公共定义域E的一列函数,这无 穷个函数的“和” u1(x)+u2(x)+…+un(x)+… 称为函数项级数,记为∑un(x)
文档格式:DOC 文档大小:2.28MB 文档页数:6
第二节、平面图形的面积 1.直角坐标系下平面图形的面积 2.参数方程形式下平面图形的面积 3.极坐标系下平面图形的面积
文档格式:DOC 文档大小:429KB 文档页数:5
第二节可分离变量的微分方程 1.可分离变量的微分方程:g(y)dy=f(x)dx 2.可分离变量的微分方程解法
首页上页474475476477478479480481下页末页
热门关键字
搜索一下,找到相关课件或文库资源 5609 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有