点击切换搜索课件文库搜索结果(5152)
文档格式:PDF 文档大小:86.82KB 文档页数:6
In the previous lectures we have described particle motion as it would be seen by an observer standing still at a fixed origin. This type of motion is called absolute motion. In many situations of practical interest, we find ourselves forced to describe the motion of bodies while we are simultaneously moving with respect to a more basic reference. There are many examples were such situations occur. The absolute motion of a passenger inside an aircraft is best
文档格式:PDF 文档大小:103.33KB 文档页数:8
In addition to the equations of linear impulse and momentum considered in the previous lecture, there is a parallel set of equations that relate the angular impulse and momentum. Angular Momentum We consider a particle of mass, m, with velocity v, moving under the influence of a force F. The angular momentum about point O is defined as the \moment\ of the particle's linear
文档格式:PDF 文档大小:82.46KB 文档页数:5
We have seen that the work done by a force F on a particle is given by dw =. dr. If the work done by F, when the particle moves from any position TI to any position T2, can be expressed as, W12=fdr=-(V(r2)-V(1)=V-v2, (1) then we say that the force is conservative. In the above expression, the scalar
文档格式:PDF 文档大小:107.72KB 文档页数:8
In lecture D2 we introduced the position velocity and acceleration vectors and referred them to a fixed cartesian coordinate system. While it is clear that the choice of coordinate system does not affect the final answer, we shall see that, in practical problems, the choice of a specific system may simplify the calculations considerably. In previous lectures, all the vectors at all points in the trajectory were expressed in the
文档格式:PDF 文档大小:97.24KB 文档页数:6
is a vector equation that relates the magnitude and direction of the force vector, to the magnitude and direction of the acceleration vector. In the previous lecture we derived expressions for the acceleration vector expressed in cartesian coordinates. This expressions can now be used in Newton's second law, to produce the equations of motion expressed in cartesian coordinates
文档格式:PDF 文档大小:1.21MB 文档页数:46
金融期权组合交易策略 单个金融期权交易盈亏分析 期权及组合交易概述 期货与期权的组合交易 利率期权
文档格式:PDF 文档大小:1.4MB 文档页数:64
应用:农产品期权定价 布莱克-舒尔斯-默顿期权定价公式 股票价格的变化过程 布莱克-舒尔斯-默顿期权定价模型的基本思路
文档格式:PDF 文档大小:80.54KB 文档页数:6
In this course we will study Classical Mechanics. Particle motion in Classical Mechanics is governed by Newton's laws and is sometimes referred to as Newtonian Mechanics. These laws are empirical in that they combine observations from nature and some intuitive concepts. Newton's laws of motion are not self evident. For instance, in Aristotelian mechanics before Newton, force was thought to be required in order
文档格式:DOC 文档大小:34KB 文档页数:2
一、名词解释(6题共30分,每题5分) (1).晶体:原子在空间呈有规则的周期性的重复排列。 (2).硬度:材料在表面上的小体积内抵抗变形或破裂的能力。 (3).疲劳强度:材料抵抗交变应力作用下断裂破坏的能力
文档格式:PPT 文档大小:142KB 文档页数:16
4.4.1 结构材料的选择 4.4.2 焊缝布置 4.4.3 焊接方法的选择 4.4.4 焊接接头设计 4.4.5 焊接工艺设计示例
首页上页507508509510511512513514下页末页
热门关键字
搜索一下,找到相关课件或文库资源 5152 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有