点击切换搜索课件文库搜索结果(5712)
文档格式:DOC 文档大小:194KB 文档页数:3
设V是复线性空间.V×V上的一个函数,如果满足 (i)(·,·)对第一个变量是线性的 (i)(a,B)=(B (ii1)ya∈V,(a,a)≥0,且(a,a)=0分a=0 则称(a,B)为向量a,B的内积,具有内积的复线性空间称为酉空间(欧氏空间在复线性 空间上的推广)
文档格式:DOC 文档大小:242.5KB 文档页数:5
第六章6-4四维时空空间与辛空间 在狭义相对论中,用三个空间坐标和一个时间坐标来刻画一个物体的运动,称为四维时 空空间 在R上规定一个特殊的度量f(a,B)=x1y1+x2y2+x3y3-x4y4(其中a=( x,x2,x3,x4)',B=(y1,y2,y3,y4)),称为四维时空空间的度量
文档格式:DOC 文档大小:82KB 文档页数:2
7-1幂零线性变换的 Jordan标准型 A是数域K上n维线性空间V上的线性变换,如果存在正整数m,使A=0,则称A是一个 幂零线性变换. 对数域K上n阶方阵A,如果存在正整数m,使Am=0,则称A为幂零矩阵 命题幂零线性变换的特征值等于0 证明设是V上幂零线性变换A的特征值,则存在V中非零向量a,使得 Aa= 假设A=0
文档格式:DOC 文档大小:97.5KB 文档页数:3
定义设A是数域K上一个n阶方阵,g(x)是K上一个m次多项式.如果g(A)=0,则g(x) 称为方阵A的一个化零多项式 Hamilton-Cayley-定理设A是数域K上的n阶方阵,f是A的特征多项式,则f(A)=0. 证明A在C内相 Jordan似于形矩阵J,即有c上可逆阵T使TAT=J显然对任意正 整数k
文档格式:DOC 文档大小:175KB 文档页数:2
8-2同余式 8.2.1有理整数环中的同余的定义 定义8.5设m是一个正整数,若a,b∈Z,且ba∈(m),亦即m(b-a),则 称b与a模m同余,记作b=a(modm)。不难得到,b与a模m同余就是它们用m做带 余除法所得的余数相同。整数模m同余为一等价关系,验证如下:
文档格式:DOC 文档大小:1.13MB 文档页数:29
关于数的加、减、乘、除等运算的性质通常称为数的代数性质代数所研究 的问题主要涉及数的代数性质,这方面的大部分性质是有理数、实数、复数的 全体所共有的
文档格式:DOC 文档大小:905KB 文档页数:27
第九章欧几里得空间 9-1定义与基本性质 一、向量的内积 定义1设V是实数域R上一个向量空间在V上定义了一个二元实函数,称为内积记作(a,B),它具有以下性质: (1)(a,)=(B,a); (2)(ka,)=k(a,B); (3)(a+,y)=(a,y)+(B,y) (4)(a,a)≥0,当且仅当a=0时,(a,a)=0
文档格式:DOC 文档大小:526.5KB 文档页数:18
第五章二次型 5-1二次型及其矩阵表示 一、二次型及其矩阵表示 设P是一个数域,一个系数在数域P中的x1xn的二次齐次多项式称为数域P上的一个n元二次型,简称二次型
文档格式:DOC 文档大小:854.5KB 文档页数:19
线性函数 定义1设V是数域P上的一个线性空间,f是V到P的一个映射,如果f 满足 1)f(a+)=f(a)+f() 2) f(ka)=(a), 式中a,B是V中任意元素,k是P中任意数,则称f为V上的一个线性函数 从定义可推出线性函数的以下简单性质: 1.设f是v上的线性函数,则f(0)=0,f(-a)=-f(a) 2.如果B是a1,a2…,a的线性组合:
文档格式:DOC 文档大小:891KB 文档页数:29
矩阵概念的一些背景 在线性方程组的讨论中,我们看到,线性方程组的一些重要性质反映在它的系数矩阵和增广矩阵的性质上,并且解线性方程组的过程也表现为变换这些矩阵的过程除了线性方程组之外,还有大量的各种各样的问题也都提出矩阵的概念,并且这些问题的研究常常反映为有关矩阵的某些方面的研究,甚至于有些性质完全不同的
首页上页529530531532533534535536下页末页
热门关键字
搜索一下,找到相关课件或文库资源 5712 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有