点击切换搜索课件文库搜索结果(688)
文档格式:PDF 文档大小:85.64KB 文档页数:5
In this lecture we will look at some applications of Newton's second law, expressed in the different coordinate systems that were introduced in lectures D3-D5. Recall that Newton's second law F=ma, (1) is a vector equation which is valid for inertial observers. In general, we will be interested in determining the motion of a particle given
文档格式:PPT 文档大小:1.6MB 文档页数:28
固体的分类:按原子(或分子)的聚集状态分为晶体和非晶体(可以互相转换)。晶体的特点:基本质点在空间规则排列,具有规则的外形;具有一定熔点;各向异性
文档格式:PDF 文档大小:107.72KB 文档页数:8
In lecture D2 we introduced the position velocity and acceleration vectors and referred them to a fixed cartesian coordinate system. While it is clear that the choice of coordinate system does not affect the final answer, we shall see that, in practical problems, the choice of a specific system may simplify the calculations considerably. In previous lectures, all the vectors at all points in the trajectory were expressed in the
文档格式:PDF 文档大小:112.27KB 文档页数:8
In this lecture we will look at some other common systems of coordinates. We will present polar coordinates in two dimensions and cylindrical and spherical coordinates in three dimensions. We shall see that these systems are particularly useful for certain classes of problems Like in the case of intrinsic coordinates presented in the previous lecture, the reference frame changes from point to point. However, for the coordinate systems to be presented below, the reference frame depends only on the position of the particle. This is in contrast with the intrinsic coordinates, where the reference frame is a function of the position, as well as the path
文档格式:PDF 文档大小:97.24KB 文档页数:6
is a vector equation that relates the magnitude and direction of the force vector, to the magnitude and direction of the acceleration vector. In the previous lecture we derived expressions for the acceleration vector expressed in cartesian coordinates. This expressions can now be used in Newton's second law, to produce the equations of motion expressed in cartesian coordinates
文档格式:PDF 文档大小:108.11KB 文档页数:7
We will start by studying the motion of a particle. We think of particle as a body which has mass, but has negligible dimensions. Treating bodies as particles is, of course, an idealization which involves an approximation. This approximation may be perfectly acceptable in some situations and not adequate in some other cases. For instance, if we want to study the motion of planets it is common to consider each planet as a particle
文档格式:PDF 文档大小:80.54KB 文档页数:6
In this course we will study Classical Mechanics. Particle motion in Classical Mechanics is governed by Newton's laws and is sometimes referred to as Newtonian Mechanics. These laws are empirical in that they combine observations from nature and some intuitive concepts. Newton's laws of motion are not self evident. For instance, in Aristotelian mechanics before Newton, force was thought to be required in order
文档格式:PDF 文档大小:1.4MB 文档页数:64
应用:农产品期权定价 布莱克-舒尔斯-默顿期权定价公式 股票价格的变化过程 布莱克-舒尔斯-默顿期权定价模型的基本思路
文档格式:PDF 文档大小:1.21MB 文档页数:46
金融期权组合交易策略 单个金融期权交易盈亏分析 期权及组合交易概述 期货与期权的组合交易 利率期权
文档格式:PPT 文档大小:7.25MB 文档页数:115
第一节机床的分类、型号编制方法和构造 第二节车床与车刀 第三节钻床、镗床与孔加工刀具 第四节铣床与铣刀 第五节刨床、拉床及工艺特点 第六节磨床与砂轮 第七节齿轮加工机床与齿轮加工刀具
首页上页5152535455565758下页末页
热门关键字
搜索一下,找到相关课件或文库资源 688 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有