点击切换搜索课件文库搜索结果(5513)
文档格式:DOC 文档大小:537.5KB 文档页数:6
第九章一元多项式环 9-1一元多项式环的基本理论 9.11域上的一元多项式环的定义 定义9.1设K是一个数域,x是一个不定元。下面的形式表达式
文档格式:DOC 文档大小:419.5KB 文档页数:5
第八章有理整数环 8-1有理整数环的基本概念 8.1.1有理整数环的基本概念 全体整数所组成的集合中有两种运算:加法和乘法,而且它们满足下面运算法则: (1)加法满足结合律; (2)加法满足加换律 (3)有一个数0,是对任意整数a,0+a=a; (4)对任意整数a,存在整数b,使b+a=0 (5)乘法满足结合律 (6)有一个数1,是对任意整数a,la=a
文档格式:DOC 文档大小:82KB 文档页数:2
7-1幂零线性变换的 Jordan标准型 A是数域K上n维线性空间V上的线性变换,如果存在正整数m,使A=0,则称A是一个 幂零线性变换. 对数域K上n阶方阵A,如果存在正整数m,使Am=0,则称A为幂零矩阵 命题幂零线性变换的特征值等于0 证明设是V上幂零线性变换A的特征值,则存在V中非零向量a,使得 Aa= 假设A=0
文档格式:DOC 文档大小:285KB 文档页数:3
设A是n维酉空间V内的线性变换,如果V内的线性变换A满足a,BV,有 (Aa, B)=(a, B) 则称A是A的共轭变换.A为A的共轭变换当且仅当它们在标准正交基下的矩阵互为共轭 转置. 共轭变换的五条性质:
文档格式:DOC 文档大小:127.5KB 文档页数:2
设A是n维欧氏空间V内的一个线性变换,如果对a,∈V,都有 (Aa,)=(a, AB) 则称A是V内的对称变换 命题n维欧氏空间V上的线性变换A是对称变换当且仅当它在标准正交基 ,2n下的矩阵A是实对称矩阵
文档格式:DOC 文档大小:192KB 文档页数:3
第六章6-2欧氏空间中特殊的线性变换 1.正交变换 设V是n维欧氏空间,A是V内一个线性变换如果对任意a,B∈V都有 (Aa, AB)=(a,B) 则称A是V内的一个正交变换 正交变换的四个等价表述 命题2.1A是n维欧氏空间V内的一个线性变换,则下列命题等价
文档格式:DOC 文档大小:101KB 文档页数:2
2.正定二次型: 正惯性指数等于变元个数的实二次型称为正定二次型: 正定二次型的(实对称)矩阵称为正定矩阵 设A=(an)为n阶实对称矩阵,称A的r阶子式
文档格式:DOC 文档大小:251.5KB 文档页数:3
5.1.3线性空间上的对称双线性函数、二次型函数的定义 定义若f为V上的双线性函数且f(a,B)=f(B,a),则称f为V上的对称双线性函数
文档格式:DOC 文档大小:214.5KB 文档页数:2
第一学期第二十八次课 命题如果n维空间V上的线性变换A的矩阵相似于对角矩阵,则A在任一不变子空 间M上(的限制)的矩阵相似于对角矩阵。 证明若V上的线性变换A的矩阵相似于对角矩阵,则V可以分解为特征子空间的直 和。记A的所有特征值为,2,2,则V=V4V,取M=nV, 断言M=M1M2⊕M,首先要证明M=M1+M2+…M “2”显然:“”a∈M,则存在a1∈V,使a=a1+a2+…+a,两边 同时用A(j=1,2,…,t-1)作用,得到表达式
文档格式:DOC 文档大小:77.5KB 文档页数:1
4.4.1线性变换的特征值与特征向量的定义 定义若存在非零向量ξ∈V,使得对于某个∈K,有A5=5,则称ξ是A的属于特征值λ的特征向量。命题线性空间V中属于确定的特征值λ的特征向量(添加上零向量)构成子空间。证明设51,52是属于的特征向量,Vk,∈K
首页上页537538539540541542543544下页末页
热门关键字
搜索一下,找到相关课件或文库资源 5513 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有