点击切换搜索课件文库搜索结果(7878)
文档格式:PPT 文档大小:1.07MB 文档页数:84
第一节简单表单的创建 第二节表单设计器 第三节表单的属性、事件和方法程序 第四节表单控件 第五节表单的应用
文档格式:DOC 文档大小:75KB 文档页数:1
第六章6-2欧氏空间中特殊的线性变换(续) 命题正交矩阵的特征多项式的根的绝对值等于1 证明设入∈C是正交矩阵A的特征多项式的根,则≠0.齐次线性方程组(e-a)X=0 在C内有非零解向量 ( a:a 显然Aa=a=a'a'=a'a'a==a'aa=aa=aa=1从而 入|=1 推论正交矩阵的特征值只能是±1 命题设A是n维欧氏空间V上的正交变换,若A的特征多项式有一个根=e
文档格式:DOC 文档大小:245.5KB 文档页数:3
9-3实系数多项式根的分布 9.3.1复系数多项式的根的绝对值的上界 命题设f(x)=axn+a1xn+…+an∈C[x],其中a≠0而n≥1。令 a=max{ 则对f(x)的任一复根a,有|ak1+A/a 证明如果A=0,则a=0,命题成立。下面设A>0 如果|a1+A/a,那么,因为f(a)=0,故有 la Haa++aa a+…+an ≤A(ar-++1)=a(la--1)/(a-1) 现在|a>1,故从上式立刻得到 la a\ Ala\ /(al-1) 两边消去|a,得|ak1+A/a|,矛盾
文档格式:DOC 文档大小:296KB 文档页数:4
12-4外代数 12.4.1域K上的线性空间V的到域K上的线性空间W的r重交错映射的定义 定义12.9设V是数域K上的n维线性空间,又设W也是K上的一个线性空间。 从 x…xV 到W的一个多线性映射f如果满足如下条件 f(aaaa)=0(i=1,2r-1) (即第i,i+1两个变元取V内同一个向量a1),则称f为一个r重交错映射。 12.3.2r重交错映射的三条性质
文档格式:DOC 文档大小:253.5KB 文档页数:5
12-3张量 12.3.1线性变换的张量积的矩阵与线性变换的矩阵的关系 设V是域K上的n维线性空间,G和是V的两组基,且 (n)= (1) 设a∈V在(1n)下的坐标为(x1,x),则由前面的知识,可得 x :=T (2) ) 由此可知,坐标是逆变的 现在考虑V的对偶空间n在的对偶基为f,在v的 对偶基为gg,那么就有
文档格式:DOC 文档大小:23.5KB 文档页数:2
一、 色彩 1、 色彩与生活的关系 2、 工业产品设计与色彩 学习色彩、了解色彩、认识色彩、感受色彩、表达色彩
文档格式:DOC 文档大小:245KB 文档页数:3
第十二章张量积与外代数 12-1多重线性映射 12.1.1线性空间的一组基的对偶基的定义 定义12.1对偶空间 设v是k上n维线性空间,E2,Sn是的一组基,则线性函数 f:V→K(K为数域)被f在此组基下的映射法则决定,即f()f(2)f(n)已给 定。现设V内全体线性函数组成的集合为V,则在V内定义加法与数乘如下: (i)f,,+)(a)= f(a)+g(a); (iif EV', k K, f )(a)= (a). 则V关于上述加法、数乘组成K上的线性空间,称为V的对偶空间,记作o(V,K 定义12.2对偶基 假设同定义12.1,定义V内n个线性函数
文档格式:PDF 文档大小:98.07KB 文档页数:9
1.7有理数域上的多项式 定义7.1设f(x)是一个整系数多项式,若f(x)的系数 的公因子只有±1,则称f(x)是一个本原多项式. Gauss引理两个本原多项式的乘积仍为本原多项式. 证明设 f(x)=amx+…+a1x+a, g(x)=bnxn+…+bx+b 是两个本原多项式令
文档格式:DOC 文档大小:537.5KB 文档页数:6
第九章元多项式环 9-1一元多项式环的基本理论 911域上的一元多项式环的定义 定义91设K是一个数域,x是一个不定元。下面的形式表达式 f(x) (其中an3a1,a2属于K,且仅有有限个不是0)称为数域K上的一个不定元x的一元多 式。数域K上一个不定元x的多项式的全体记作K[x] 下面定义K[x]内加法、乘法如下 加法设
文档格式:PDF 文档大小:111.54KB 文档页数:8
3.6可逆矩阵 定义6.1设A是一个n阶矩阵若有阶矩阵B 使得AB=BA=,则称A是一个可逆矩阵(非奇 工异矩阵、非退化矩阵),并称B是A的一个逆. 例如,设
首页上页559560561562563564565566下页末页
热门关键字
搜索一下,找到相关课件或文库资源 7878 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有