点击切换搜索课件文库搜索结果(5927)
文档格式:PDF 文档大小:229.65KB 文档页数:31
Governing Equation Stability Analysis 3 Examples Relationship between σ and λh Implicit Time-Marching Scheme
文档格式:PDF 文档大小:314.87KB 文档页数:49
Outline Governing Equation Stability Analysis 3 Examples Relationship between σ and λh Implicit Time-Marching Scheme
文档格式:PDF 文档大小:1.04MB 文档页数:19
1 Finite difference formulas 1.1 Problem definition We have seen that one of the necessary ingredients in devising finite differe
文档格式:PDF 文档大小:673.82KB 文档页数:40
Finite Difference Problem Definition Formulas
文档格式:PDF 文档大小:864.44KB 文档页数:54
Poisson Equation in 1D Model Problem Boundary Value Problem(BVP) Wra(ac)= f(a) N1 x∈(0,1),w(0)=(1)=0,f∈C0N2 Describes many simple physical phen
文档格式:PDF 文档大小:1.53MB 文档页数:26
())/0=),6()/+2g= edrhugdr)/2M),oxdx) o: Elex Enwk'< uz=x), a(z qurgdiea= uuv y= adwvopu)z(o j): ac=2 Ghwceo(udo: 2M( Hw(uy 0: w cloks rE o Chu Tnr(i b)iwgiffadu cu wa rdo h ouno pk- which wite pexy a ca)=dre halfan a)+x=gub)whwxppdpxiv z=ioy u)udre Wwv ay co)(igad )o)a)i o u v( wh
文档格式:PDF 文档大小:1.22MB 文档页数:30
1 Motivation The Poisson problem has a strong formulation a minimization formulation and a weak formulation T weak formulations are more general than the strong formulation in terms of regularity and admissible data SLIDE 2 The minimization/weak formulations are defined by: a space X; a bilinear The minimization/weak formulations identify ESSENTIAL boundary conditions NATURAL boundary conditions ed in a The points of departure for the finite element method are the weak formulation(more generally) the minimization statement (if a is SPD) 2 The dirichlet problem 2.1 Strong Formulation Find u such that
文档格式:PDF 文档大小:840.03KB 文档页数:42
Dirichlet Model Problems Strong Form Domain: Q =(0, 1) Find u such that (0)=(1)=0 for given f SMA-HPO⊙1999M Poisson in Rl. Formulation 1
文档格式:PDF 文档大小:2.48MB 文档页数:34
A posteriori error estimates are arguably more useful than a priori esti mates since we know uh. Bear in mind, however, that (i) in most methods
文档格式:PDF 文档大小:1.39MB 文档页数:22
Shock Capturing vs. Shock Fitting hocks when the shocks or di n the solution as regions of large gradients without having to give them any special treatment. If we use conservative schemes, the Lax-Wendroff theorem 's. will be to a weak solution We know tha reak solutions satisfy the jump conditions and therefore give the correct shock
首页上页579580581582583584585586下页末页
热门关键字
搜索一下,找到相关课件或文库资源 5927 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有