1 Programming 1.1 M file 1.1.1 Program Control Statements 1.1.2 M-File Functions 1.2 anonymous functions 2 Computational statistics with Matlab 2.1 Functions on Probability and Statistics 2.1.1 Probability distribution 2.1.2 Descriptive statistics 2.1.3 Statistical plotting 2.1.4 Linear model 2.1.5 Multivariate Statistics 2.2 Monte Carlo with Matlab 2.2.1 Monte Carlo Assessment of Hypothesis Testing 2.2.2 MCMC with matlab 3 Symbolic computation with matlab 3.1 Creating Symbolic Variables and Expressions 3.2 Calculus 4 Optimization 4.1 Unconstrained Minimization Example 4.2 Nonlinear Inequality Constrained Example
1 Introduction 1.1 GUI and Basic functions 1.1.1 Command Window 1.1.2 Command History 1.1.3 MatLab Help 2 Data in MatLab 2.1 Manipulating data 2.1.1 Creating Objects 2.1.2 Operators 3 Graphics 3.1 Use plotting tools 3.2 Use the command interface 3.2.1 Basic plots 3.2.2 Adding Plots to an Existing Graph 3.2.3 Multiple Plots in One Figure 3.2.4 Controlling the Axes 3.2.5 Axis Labels and Titles 3.3 Mesh and Surface Plots 3.4 Creating Specialized Plots 3.5 Advanced plotting
1 EM optimization method 1.1 EM algorithm 1.2 Convergence 1.3 Usage in exponential families 1.4 Usage in finite normal mixtures 1.5 Variance estimation 1.5.1 Louis method 1.5.2 SEM algorithm 1.5.3 Bootstrap method 1.5.4 Empirical Information 1.6 EM Variants 1.6.1 Improving the E step 1.6.2 Improving the M step 1.7 Pros and Cons
1 Markov Chain Monte Carlo Methods 1.4 The Gibbs Sampler 1.4.1 The Slice Gibbs Sampler 1.5 Monitoring Convergence 1.5.1 Convergence diagnostics plots 1.5.2 Monte Carlo Error 1.5.3 The Gelman-Rubin Method 1.6 WinBUGS Introduction 1.6.1 Building Bayesian models in WinBUGS 1.6.2 Model specification in WinBUGS 1.6.3 Data and initial value specification 1.6.4 Compiling model and simulating values
1 Bootstrap and Jackknife 1.1 The Bootstrap 1.1.1 Bootstrap Estimation of Standard Error 1.1.2 Bootstrap Estimation of Bias 1.2 Jackknife 1.3 Jackknife-after-Bootstrap 1.4 Bootstrap Confidence Intervals 1.4.1 The Standard Normal Bootstrap Confidence Interval 1.4.2 The Percentile Bootstrap Confidence Interval 1.4.3 The Basic Bootstrap Confidence Interval 1.4.4 The Bootstrap t interval 1.5 Better Bootstrap Confidence Intervals 1.6 Application: Cross Validation