点击切换搜索课件文库搜索结果(6126)
文档格式:PPT 文档大小:1.73MB 文档页数:41
连续函数的定义 定义3.2.1 设函数 f (x) 在点 x 0 的某个邻域中有定义,并且成立 lim x→x0 f (x) = f (x ) 0 , 则称函数 f (x) 在点 x 0 连续,而称 x 0 是函数 f (x) 的连续点
文档格式:PPT 文档大小:1.22MB 文档页数:34
无穷小量的比较 定义3.3.1若limf(x)=0,则称当x→x时f(x)是无穷小量 x→x 无穷小量是以零为极限的变量。这里的极限过程x→x可以扩 充到x→x+、x-、∞、+∞、-∞0等情况
文档格式:PPT 文档大小:1.28MB 文档页数:29
有界性定理 定理3.4.1若函数f(x)在闭区间[a,b]上连续,则它在[a,b]上有 界。 证用反证法。 若f(x)在[ab]上无界,将[ab]等分为两个小区间[aa+b]与 a+b,b,则f(x)至少在其中之一上无界,把它记为[a,b] 再将闭区间[ab]与等分为两个小区间a1,a1+b]与a1+b
文档格式:PPT 文档大小:1.46MB 文档页数:44
一致收敛的判别 定理10.2.1(函数项级数一致收敛的 Cauchy收敛原理)函数 项级数∑un(x)在D上一致收敛的充分必要条件是:对于任意给定的 n=1 >0,存在正整数N=N(),使 un+(x)+un2(x)++um(x)|n>N与一切x∈D成立
文档格式:PPT 文档大小:227KB 文档页数:9
定义 10.5.1 设函数 f (x)在闭区间[a, b]上有定义,如果存在多项 式序列{Pn (x)}在[a, b] 上一致收敛于 f (x),则称 f (x)在这闭区间上 可以用多项式一致逼近
文档格式:PPT 文档大小:1.16MB 文档页数:32
Fourier级数的分析性质 为简单起见,假定f(x)的周期为2π。 首先,利用 Riemann引理可以直接得出 定理16.3.1设f(x)在[-上可积或绝对可积,则对于f(x)的 Fourier系数an与b
文档格式:PPT 文档大小:699.5KB 文档页数:20
带 PeanoTaylor余项的公式 导数,则存在x的一个邻域,对于该邻域中的任一点x,成立 定理5.3.1(带 PeanoTaylor余项的公式)设f(x)在x处有 阶
文档格式:PPT 文档大小:1.24MB 文档页数:27
微元法 我们先回忆一下求曲边梯形面积S的步骤:对区间[a,b作划分 a=x
文档格式:PPT 文档大小:619.5KB 文档页数:21
数项级数 设x1,x2,…xn,…是无穷可列个实数,我们称它们的“和” x1+x2+…+xn+… 为无穷数项级数(简称级数),记为∑xn,其中x称为级数的通项或一 般项
文档格式:PPT 文档大小:1.1MB 文档页数:37
正项级数 定义9.3.1如果级数∑xn的各项都是非负实数,即 n= xn≥0,n=1,2,… 则称此级数为正项级数
首页上页604605606607608609610611下页末页
热门关键字
搜索一下,找到相关课件或文库资源 6126 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有