点击切换搜索课件文库搜索结果(6339)
文档格式:DOC 文档大小:254.5KB 文档页数:3
第五章5-1双线性函数 5.1.1线性空间上的线性函数的定义 1、线性函数的定义 定义设V为数域K上的线性空间,fV→K为映射,满足 f(a+B)=f(a)+f(),va,B∈V;f(ka)kf(a),∈k,aev,则称f为由V 到K的一个线性函数(即f为V到K的一个线性映射) 如同一般的线性映射,有以下事实: i)、f:V→K是线性函数当且仅当f(ka+1B)=kf(a)+lf(B) i)、f(0)=0; i)、f(-a)=-f(a) 命题数域K上的n维线性空间V上的线性函数的全体关于函数加法和数乘构成K上 的n维线性空间
文档格式:DOC 文档大小:209KB 文档页数:3
9-4单变量有理函数域 9.4.1域上的一元有理分式域的定义 设R为一整环,命S={(b,a)|a,b∈R,a≠0}。现在S中规定为 逐一验证“反身性”、“对称性”、“传递性”可知为一等价关系。用(b,a)表示与 (ba)等价的元素的全体。现记S关于u的等价类的集合为%,则(b,a)是中的元 素。下面在上定义二元运算:
文档格式:PDF 文档大小:164.44KB 文档页数:5
一.(本题共40分)给定有理数域上的多项式f(x)=x4+3x2+3 1.(本题5分)证明f(x)为中的不可约多项式 2.(本题5分)设a是f(x)在复数域C内的一个根.定义 Qa]= {ao +aa+a2a2}. 证明:对于任意的g(x)∈x],有g(a)∈a];又对于任意的B,ya,有 Bry Qa 3.(本题5分)接上题.证明:若B∈Qa],B≠0,则存在∈a],使得y=1. 4.(本题15分)找出f(x)的一个sturm序列.判断f(x)有几个实根. 5.(本题10分)求下面三阶方阵在有理数域Q上的最小多项式:
文档格式:DOC 文档大小:345.5KB 文档页数:7
2.3逆矩阵 定义:对于Ann,若有Bn满足AB=BA=E,则称A为可逆矩阵, 且B为A的逆矩阵,记作A-1=B. 定理1若A为可逆矩阵,则A的逆矩阵唯一 证设B与C都是A的逆矩阵,则有
文档格式:DOC 文档大小:377.5KB 文档页数:7
4.4向量空间 1.向量空间:设V是具有某些共同性质的n维向量的集合,若 对任意的a,B∈V,有a+B∈V;(加法封闭) 对任意的a∈V,k∈R,有ka∈V.(数乘封闭) 称集合为向量空间 例如:R={x|x=(51,52,,5n),5∈R}是向量空间 Vo={x|x=(0,52,,5n),5∈R}是向量空间 V1={x|x=(1,52,,5n),5∈R}不是向量空间 ∵0(1,52,,5n)=(0,0,,0)V1,即数乘运算不封闭
文档格式:DOC 文档大小:260.5KB 文档页数:6
目的:对于实对称矩阵A(A=A),求正交矩阵Q(QQ=E), 使得QAQ=A.此时,称A正交相似于对角矩阵A 1.实对称矩阵的特征值与特征向量的性质 定理6a=A→∈R. 证设Ax=x(x≠0),x=(51,52,5n),则有 x=5+2++n>0
文档格式:DOC 文档大小:43KB 文档页数:4
课程介绍 线性代数是我校高工专类各专业一门重要的基础教育课。本课程坚持“以应用为目的,必 须够用为度,理论精要,应用突出”的原则,按照“从实际中来,到实际中去”的思想,即从 实际中提出问题一一建立数学模型一求解数学模型一一解决实际问题,将线性代数的基本知 识、四大内容贯穿在一起,自成体系,为各专业的专业课学习提供必要的理论基础 本课程总计二十学时,是运用启发式、互动式、参与式和以学生为主体教学方法的讲授与实 践性教学,完成所设计的教学任务
文档格式:PDF 文档大小:91.56KB 文档页数:5
1.2多项式的整除性 定义2.1设f(x)g(x)∈[x],若有h(x)∈[x]使得 f(x)=g(x)h(x),则称g(x)整除f(x),也称g(x)是f(x)的 二一个因式,f(x)是g(x)的一个倍式,记为g(x)f(x)(否则 二记为g(x)十f(x))进一步,若还有0
文档格式:PDF 文档大小:98.51KB 文档页数:9
设有n个元方程组成的方程组,其系数构成的n阶行列式
文档格式:PDF 文档大小:105.54KB 文档页数:7
3.4转置以及特殊矩阵 定义4.1设A=(an),把A的行写成列而得的 mxn nxm矩阵称为A的转置矩阵,记为AT,即
首页上页623624625626627628629630下页末页
热门关键字
搜索一下,找到相关课件或文库资源 6339 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有