网站首页
校园空间
教师库
在线阅读
知识问答
大学课件
高等教育资讯网
大学课件分类
:
基础课件
工程课件
经管课件
农业课件
医药课件
人文课件
其他课件
课件(包)
文库资源
点击切换搜索课件
文库搜索结果(6313)
北京大学:《高等代数》课程教学资源(讲义)第九章 一元多项式环 9.1 一元多项式环的基本理论(9.1.7-9.1.11)
文档格式:DOC 文档大小:433.5KB 文档页数:5
9.1.7用形式微商判断多项式是否有重因式 定义9.10设f(x)=axn+a1x-+…+anx+an∈K[x],定义 f(x)=naxn-+(n-1)a1xn-2+…+an-∈[x] 称f(x)为f(x)的一阶形式微商
北京大学:《高等代数》课程教学资源(讲义)第九章 一元多项式环 9.1 一元多项式环的基本理论(9.1.1-9.1.6)
文档格式:DOC 文档大小:537.5KB 文档页数:6
第九章一元多项式环 9-1一元多项式环的基本理论 9.11域上的一元多项式环的定义 定义9.1设K是一个数域,x是一个不定元。下面的形式表达式
北京大学:《高等代数》课程教学资源(讲义)第八章 有理整数环 8.1 有理整数环的基本概念
文档格式:DOC 文档大小:419.5KB 文档页数:5
第八章有理整数环 8-1有理整数环的基本概念 8.1.1有理整数环的基本概念 全体整数所组成的集合中有两种运算:加法和乘法,而且它们满足下面运算法则: (1)加法满足结合律; (2)加法满足加换律 (3)有一个数0,是对任意整数a,0+a=a; (4)对任意整数a,存在整数b,使b+a=0 (5)乘法满足结合律 (6)有一个数1,是对任意整数a,la=a
北京大学:《高等代数》课程教学资源(讲义)第七章 线性变换的Jordan标准型 7.1 幂零线性变换的 Jordan 标准型
文档格式:DOC 文档大小:82KB 文档页数:2
7-1幂零线性变换的 Jordan标准型 A是数域K上n维线性空间V上的线性变换,如果存在正整数m,使A=0,则称A是一个 幂零线性变换. 对数域K上n阶方阵A,如果存在正整数m,使Am=0,则称A为幂零矩阵 命题幂零线性变换的特征值等于0 证明设是V上幂零线性变换A的特征值,则存在V中非零向量a,使得 Aa= 假设A=0
北京大学:《高等代数》课程教学资源(讲义)第二学期第八次课
文档格式:DOC 文档大小:285KB 文档页数:3
设A是n维酉空间V内的线性变换,如果V内的线性变换A满足a,BV,有 (Aa, B)=(a, B) 则称A是A的共轭变换.A为A的共轭变换当且仅当它们在标准正交基下的矩阵互为共轭 转置. 共轭变换的五条性质:
北京大学:《高等代数》课程教学资源(讲义)第六章 带度量的线性空间(6.3)对称变换
文档格式:DOC 文档大小:127.5KB 文档页数:2
设A是n维欧氏空间V内的一个线性变换,如果对a,∈V,都有 (Aa,)=(a, AB) 则称A是V内的对称变换 命题n维欧氏空间V上的线性变换A是对称变换当且仅当它在标准正交基 ,2n下的矩阵A是实对称矩阵
北京大学:《高等代数》课程教学资源(讲义)第六章 带度量的线性空间(6.2)欧氏空间中特殊的线性变换
文档格式:DOC 文档大小:192KB 文档页数:3
第六章6-2欧氏空间中特殊的线性变换 1.正交变换 设V是n维欧氏空间,A是V内一个线性变换如果对任意a,B∈V都有 (Aa, AB)=(a,B) 则称A是V内的一个正交变换 正交变换的四个等价表述 命题2.1A是n维欧氏空间V内的一个线性变换,则下列命题等价
北京大学:《高等代数》课程教学资源(讲义)第二学期第二次课
文档格式:DOC 文档大小:101KB 文档页数:2
2.正定二次型: 正惯性指数等于变元个数的实二次型称为正定二次型: 正定二次型的(实对称)矩阵称为正定矩阵 设A=(an)为n阶实对称矩阵,称A的r阶子式
北京大学:《高等代数》课程教学资源(讲义)第五章 5.1 双线性函数 5.1.3 线性空间上的对称双线性函数、二次型函数的定义 5.2 二次型 5.2.1 数域上的二次型的定义,二次型 5.2.2 二次型化为标准形的计算方法(配方法)
文档格式:DOC 文档大小:251.5KB 文档页数:3
5.1.3线性空间上的对称双线性函数、二次型函数的定义 定义若f为V上的双线性函数且f(a,B)=f(B,a),则称f为V上的对称双线性函数
北京大学:《高等代数》课程教学资源(讲义)第一学期第二十八次课
文档格式:DOC 文档大小:214.5KB 文档页数:2
第一学期第二十八次课 命题如果n维空间V上的线性变换A的矩阵相似于对角矩阵,则A在任一不变子空 间M上(的限制)的矩阵相似于对角矩阵。 证明若V上的线性变换A的矩阵相似于对角矩阵,则V可以分解为特征子空间的直 和。记A的所有特征值为,2,2,则V=V4V,取M=nV, 断言M=M1M2⊕M,首先要证明M=M1+M2+…M “2”显然:“”a∈M,则存在a1∈V,使a=a1+a2+…+a,两边 同时用A(j=1,2,…,t-1)作用,得到表达式
首页
上页
624
625
626
627
628
629
630
631
下页
末页
热门关键字
湖南大学
RESEARCH
畜产
信息论基础
薪酬管理第十三版
系统
西北工业大学
物理教学法
文秘管理
温州大学
泰州职业技术学院
史记
时间序列分析
人因分析
人体解剖生理学
燃烧
民法案例分析
旅游经济学
林业管理
课程与教学评价
可编程控制器原理
科学研究方法论
教育心理学
江苏食品学院
计算化学
河西学院
国际战略分析
工程机械应用技术
分子
二级
东北财经大学
电路2
第8章
大脑
储能电池
城市生态学
贝叶斯分析
VFP数据库
pH计
Java基础入门
搜索一下,找到相关课件或文库资源
6313
个
©2008-现在 cucdc.com
高等教育资讯网 版权所有