点击切换搜索课件文库搜索结果(10041)
文档格式:PDF 文档大小:254.59KB 文档页数:37
正项级数 定义 9.3.1 如果级数∑ ∞ n=1 n x 的各项都是非负实数,即 xn ≥ 0,n = 1,2,…, 则称此级数为正项级数
文档格式:PDF 文档大小:170.84KB 文档页数:21
数项级数 设 1 x , 2 x ,…, n x ,…是无穷可列个实数,我们称它们的“和” 1 x + 2 x +\+ xn +\ 为无穷数项级数(简称级数),记为∑ ∞ n=1 n x ,其中 n x 称为级数的通项或一 般项
文档格式:PDF 文档大小:154.18KB 文档页数:13
数值积分 对于求定积分,虽然有了 Newton-Leibniz 公式,但在整个可积函 数类中,能够用初等函数表示不定积分的只占很小一部分,也就是说, 对绝大部分在理论上可积的函数,并不能用 Newton-Leibniz 公式求得 其定积分之值。 另一方面,在实际问题中,许多函数只是通过测量、试验等方法 给出了在若干个离散点上的函数值,如果问题的最后解决有赖于求出 这个函数在某个区间上的积分值,那么 Newton-Leibniz 公式是难有用 武之地的
文档格式:PDF 文档大小:883.89KB 文档页数:60
应用一元函数的定积分可解决求平面图形的面积、求曲线的弧长、 求某些特殊的几何体的体积、求旋转曲面的面积等等类型的问题
文档格式:PDF 文档大小:305.46KB 文档页数:46
从实例看微分与积分的联系 到目前为止,我们已详细介绍了微分与积分(这里专指定积分) 的基本概念,但还不曾涉及微分与积分之间的任何联系。事实上,揭 示微分与积分之间的内在联系是需要许多预备知识的。现在这些预备 知识已经基本具备,可以为这两个重要的概念建立桥梁了
文档格式:PDF 文档大小:240.67KB 文档页数:16
解析方法和数值方法 求方程 f x( ) = 0 的解(或根),就是要寻找一个数 x*,使得满足 0)( * xf = 。 求方程的解主要方法有两种:解析方法和数值方法
文档格式:PDF 文档大小:183.23KB 文档页数:20
带 Peano余项的Tay1or公式 定理5.3.1(带 Peano余项的 Taylor公式)设f(x)在x处有n阶 导数,则存在x的一个邻域,对于该邻域中的任一点x,成立
文档格式:PDF 文档大小:199.09KB 文档页数:22
我们将这种类型的极限称为待定型,简称型。 待定型极限除了型以外,还有型、0∞型、∞±∞型、∞型、 1型、0°型等几种。我们先讨论如何求型和型的极限,其余几 种类型的极限都可以化成这两种类型进行计算
文档格式:PDF 文档大小:217.4KB 文档页数:27
高阶导数的实际背景及定义 物体在时刻t的瞬时加速度为当t→0时,它的平均加速度的 △t 极限值,即
文档格式:PDF 文档大小:199.34KB 文档页数:25
从定义出发求导函数 一些简单的函数可以直接通过导数的定义来求导函数: 常数函数 y C= 的导数恒等于零。 例4.3.1 求 y x = sin 的导函数
首页上页640641642643644645646647下页末页
热门关键字
搜索一下,找到相关课件或文库资源 10041 个  
©2008-现在 cucdc.com 高等教育资讯网 版权所有